2,996 research outputs found

    Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions

    Full text link
    Graphene-based vertical heterostructures, particularly stacks incorporated with other layered materials, are promising for nanoelectronics. The stacking of two model Dirac materials, graphene and topological insulator, can considerably enlarge the family of van der Waals heterostructures. Despite well understanding of the two individual materials, the electron transport properties of a combined vertical heterojunction are still unknown. Here we show the experimental realization of a vertical heterojunction between Bi2Se3 nanoplate and monolayer graphene. At low temperatures, the electron transport through the vertical heterojunction is dominated by the tunneling process, which can be effectively tuned by gate voltage to alter the density of states near the Fermi surface. In the presence of a magnetic field, quantum oscillations are observed due to the quantized Landau levels in both graphene and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an exotic gate-tunable tunneling resistance under high magnetic field, which displays resistance maxima when the underlying graphene becomes a quantum Hall insulator

    Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires

    Full text link
    Cd3As2 is a newly booming Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as 3D analog of graphene. As breaking of either time reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into Weyl semimetal with exotic chiral anomaly effect, while the experimental evidence of the chiral anomaly is still missing in Cd3As2. Here we report the magneto-transport properties of individual Cd3As2 nanowires. Large negative magnetoresistance (MR) with magnitude of -63% at 60 K and -11% at 300 K are observed when the magnetic field is parallel with the electric field direction, giving the evidence of the chiral magnetic effect in Cd3As2 nanowires. In addition, the critical magnetic field BC, where there is an extremum of the negative MR, increases with increasing temperature. As the first observation of chiral anomaly induced negative MR in Cd3As2 nanowires, it may offer valuable insights for low dimensional physics in Dirac semimetals.Comment: 4 figure

    Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity

    Get PDF
    Acoustic communication plays an important role in the reproductive behavior of anurans. Males of concave-eared torrent frog (_Odorrana tormota_) have ultrasonic communication capacity 1, 2, but it is unknown whether females communicate with ultrasound. Here we show that _O. tormota_ exhibits great sex differences in the auditory frequency sensitivity. Acoustic playback experiments demonstrated that the male's advertisement calls evoke gravid females' positive phonotaxis and vocal responses, whereas ultrasonic components of the male's calls (frequencies above 20 kHz) do not elicit female phonotaxis or vocalization. The behavioral study was complemented by electrophysiological recordings from the auditory midbrain and by laser Doppler vibrometer measurements of the tympanic membrane's response to acoustic stimuli. These measurements revealed that females have an upper frequency limit up to 16 kHz (threshold 107 dB SPL) and no ultrasound sensitivity, unlike males which have an upper frequency limit of up to 35 kHz (87 dB SPL). Single units in the female auditory midbrain have the best excitatory frequencies (BEFs) peaked around 5 kHz, corresponding to the fundamental frequency (F0) of male's most calls, whereas the male auditory midbrain units have BEFs mostly above 8 kHz, largely consistent with the F0 of female courtship calls. Females have a frequency sensitive bandwidth (10 dB above threshold) ranged from 2 to 6 kHz, narrower than that males have (5-20 kHz). The velocity amplitude of the tympanic membranes peaked around 5 kHz in females, whereas 7 kHz in males. The results suggest that the frog species O. tormota is an example of a vertebrate, which demonstrates well phonotaxis and extraordinary sex differences in hearing

    Gamellia sinensis O.Ktze extract shows anti-colorectal cancer activity via MAPK/ERK signaling pathway

    Get PDF
    Purpose: To investigate the therapeutic effects of Gamellia sinensis O.Ktze extract (GSOE) on colorectal cancers, as well as the underlying mechanisms.Methods: The effect of GSOE on colorectal cancer cells HCT-116 or Caco-2 growth was tested, and then the apoptosis and invasion was analyzed by MTT, flow cytometry and Transwell assay in vitro. Next, the mice received three doses (200, 400 or 800 mg/kg/day, gastric perfusion) of GSOE to evaluate its effects on tumor growth. Lung metastasis in mouse xenograft models which were inoculated with HCT-116 or Caco-2 cells were also investigated. The expression of p-ERK and  p-MEK were evaluated by western blot analysis in HCT-116 and Caco-2 cells with or without GSOE treatment in vitro.Result: GSOE significantly inhibited colorectal cancer cell growth and induced  apoptosis or cell cycle arrest at G1- and S-phases in HCT-116 cells and Caco-2 cells in a dose-dependent manner. Moreover, GSOE effectively retarded tumor cell migration and invasion through ERK/MAPK signaling pathway suppression.Conclusion: These findings demonstrate that GSOE has an anti-tumor effect in colorectal cancer by inactivating ERK/MAPK signaling pathway.Keywords: Gamellia sinensis O.Ktze, Colorectal cancer, Invasion, Apoptosis, Cell cycle arrest ERK, MAPK

    Interplay between Chiral Charge Density Wave and Superconductivity in Kagome Superconductors: A Self-consistent Theoretical Analysis

    Full text link
    Inspired by the recent discovery of a successive evolutions of electronically ordered states, we present a self-consistent theoretical analysis that treats the interactions responsible for the chiral charge order and superconductivity on an equal footing. It is revealed that the self-consistent theory captures the essential features of the successive temperature evolutions of the electronic states from the high-temperature ``triple-QQ" 2Ă—22\times 2 charge-density-wave state to the nematic charge-density-wave phase, and finally to the low-temperature superconducting state coexisting with the nematic charge density wave. We provide a comprehensive explanation for the temperature evolutions of the charge ordered states and discuss the consequences of the intertwining of the superconductivity with the nematic charge density wave. Our findings not only account for the successive temperature evolutions of the ordered electronic states discovered in experiments but also provide a natural explanation for the two-fold rotational symmetry observed in both the charge-density-wave and superconducting states. Moreover, the intertwining of the superconductivity with the nematic charge density wave order may also be an advisable candidate to reconcile the divergent or seemingly contradictory experimental outcomes regarding the superconducting properties

    Clinical observation on the treatment of glaucoma with cataract through triple surgery

    Get PDF
    AIM: To observe the therapeutic effect of triple surgery in the treatment of glaucoma with cataract at different stages.<p>METHODS: Totally 31 patients(55 eyes)with glaucoma and cataract were treated with phacoemulsification, lens implantation and trabeculectomy. Preoperation and postoperation of visual acuity, intraocular pressure, filtering bleb and postoperation complications were observed.<p>RESULTS: After 6mo postoperation, the vision was significantly improved. The intraocular pressure was controlled in normal range and filtering bleb was good. There was a little complications after operation.<p>CONCLUSION: Phacoemulsification intraocular lens implantation with anti-glaucoma establishes new aqueous humor outflow. It can effectively decrease intraocular pressure, deepen anterior chamber and improve vision, reduce all kinds of complications after simple glaucoma surgery

    A SiO J = 5 - 4 Survey Toward Massive Star Formation Regions

    Full text link
    We performed a survey in the SiO J=5→4J=5\rightarrow4 line toward a sample of 199 Galactic massive star-forming regions at different evolutionary stages with the SMT 10 m and CSO 10.4 m telescopes. The sample consists of 44 infrared dark clouds (IRDCs), 86 protostellar candidates, and 69 young \HII\ regions. We detected SiO J=5→4J=5\rightarrow4 line emission in 102 sources, with a detection rate of 57\%, 37\%, and 65\% for IRDCs, protostellar candidates, and young \HII\ regions, respectively. We find both broad line with Full Widths at Zero Power (FWZP) >> 20 \kms and narrow line emissons of SiO in objects at various evolutionary stages, likely associated with high-velocity shocks and low-velocity shocks, respectively. The SiO luminosities do not show apparent differences among various evolutionary stages in our sample. We find no correlation between the SiO abundance and the luminosity-to-mass ratio, indicating that the SiO abundance does not vary significantly in regions at different evolutionary stages of star formation.Comment: 25 pages, 9 figures, 5 tables, accepted for publication in Ap
    • …
    corecore