5,313 research outputs found

    Proprioceptive Sensor-Based Simultaneous Multi-Contact Point Localization and Force Identification for Robotic Arms

    Full text link
    In this paper, we propose an algorithm that estimates contact point and force simultaneously. We consider a collaborative robot equipped with proprioceptive sensors, in particular, joint torque sensors (JTSs) and a base force/torque (F/T) sensor. The proposed method has the following advantages. First, fast computation is achieved by proper preprocessing of robot meshes. Second, multi-contact can be identified with the aid of the base F/T sensor, while this is challenging when the robot is equipped with only JTSs. The proposed method is a modification of the standard particle filter to cope with mesh preprocessing and with available sensor data. In simulation validation, for a 7 degree-of-freedom robot, the algorithm runs at 2200Hz with 99.96% success rate for the single-contact case. In terms of the run-time, the proposed method was >=3.5X faster compared to the existing methods. Dual and triple contacts are also reported in the manuscript.Comment: 2023 International Conference on Robotics and Automation (ICRA

    ????????? ?????? ?????? ?????? ?????? ????????? ?????? ?????? ??????

    Get PDF
    Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition

    ????????????????????? ?????? ????????? ??????????????? ???????????? ?????? ?????????

    Get PDF
    The surface roughness and cutting forces are the important factors for the machine-part quality during the hard-turning process. The aim of this paper is to optimize hard-cutting conditions via implementation of response surface methodology (RSM). The experiments were conducted for the hard-turning process with the Box-Behnken design. The validation of the surface roughness and cutting forces was performed with the obtained 2nd order polynomial regression model. The results showed that the surface roughness was strongly dependent upon the RPM. The diminution of the cutting force was attributed to the low feed rate and the depth of cut. On the basis of the RSM, optimized cutting conditions of RPM, feed rate, and depth of cut are 3440, 0.0352 [mm/rev], and 0.03 [mm]. In this optimal cutting condition, the surface roughness can be around Ra= 0.202 ??m

    A study on the change in the characteristics of the gait of elderly people when somatosensory stimulation was applied to their ankle joint

    Get PDF
    The gait is the most complicated, habitual, and involuntary activity of humans and is a result of the cooperation of the central and peripheral nervous systems that harmoniously mobilize the sensory receptors, nervous system, and muscles. A sensory signal binds to a somatosensory system proprioceptor to obtain information on posture. This study was designed to analyze the change in the characteristics of a gait when stimulation is applied in the somatosensory system that controls the balance of the body. A result of the GRF obtained from the force plate and gyroscope signals from the sensor attached on ankle joint were obtained to compare the change before and after the somatosensory stimulation. The result of this study proved a potential of somatosensory stimulation in improving balance, which could be used in studies on the balance of positions and gait improvement

    Associations Among the Opioid Receptor Gene (OPRM1) A118G Polymorphism, Psychiatric Symptoms, and Quantitative EEG in Korean Males with Gambling Disorder: A Pilot Study

    Get PDF
    Background and aims: A single nucleotide polymorphism of A118G (SNP; rs1799971) in the opioid receptor μ-1 (OPRM1) gene is a missense variant that influences the affinity of μ-opioid receptors. This study aimed to investigate the associations among the A118G polymorphism in the OPRM1 gene, psychiatric symptoms, and quantitative electroencephalography (qEEG) findings in patients with gambling disorder. Methods: Fifty-five male patients with gambling disorder aged between 18 and 65 years old participated in the study. The A118G polymorphism was genotyped into the AA, GA, and GG groups by the polymerase chain reaction/restriction fragment length polymorphism method. Resting-state qEEG was recorded with the eyes closed, and the absolute power of the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was analyzed. Psychiatric symptoms, including depression, anxiety, impulsivity and severity of gambling, were assessed by a self-rating scale. Results: There were no significant differences in psychiatric symptoms among the three genotype groups (AA, GA, and GG). However, the frequency band power of qEEG showed significant differences among the three genotype groups. The absolute power of the beta and theta bands in the frontal lobe was higher in G allele carriers. Discussion and conclusion: Based on the findings of this study, the polymorphism in the OPRM1 gene might affect the neurophysiological process in patients with gambling disorder
    corecore