39 research outputs found

    Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy.

    Get PDF
    Perilipin 1 is a lipid droplet coat protein predominantly expressed in adipocytes, where it inhibits basal and facilitates stimulated lipolysis. Loss-of-function mutations in the PLIN1 gene were recently reported in patients with a novel subtype of familial partial lipodystrophy, designated as FPLD4. We now report the identification and characterization of a novel heterozygous frameshift mutation affecting the carboxy-terminus (439fs) of perilipin 1 in two unrelated families. The mutation cosegregated with a similar phenotype including partial lipodystrophy, severe insulin resistance and type 2 diabetes, extreme hypertriglyceridemia, and nonalcoholic fatty liver disease in both families. Poor metabolic control despite maximal medical therapy prompted two patients to undergo bariatric surgery, with remarkably beneficial consequences. Functional studies indicated that expression levels of the mutant protein were lower than wild-type protein, and in stably transfected preadipocytes the mutant protein was associated with smaller lipid droplets. Interestingly, unlike the previously reported 398 and 404 frameshift mutants, this variant binds and stabilizes ABHD5 expression but still fails to inhibit basal lipolysis as effectively as wild-type perilipin 1. Collectively, these findings highlight the physiological need for exquisite regulation of neutral lipid storage within adipocyte lipid droplets, as well as the possible metabolic benefits of bariatric surgery in this serious disease.Wellcome TrustThis is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db14-010

    Inter-domain Communication Mechanisms in an ABC Importer: A Molecular Dynamics Study of the MalFGK2E Complex

    Get PDF
    ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”

    Transcriptional Changes Common to Human Cocaine, Cannabis and Phencyclidine Abuse

    Get PDF
    A major goal of drug abuse research is to identify and understand drug-induced changes in brain function that are common to many or all drugs of abuse. As these may underlie drug dependence and addiction, the purpose of the present study was to examine if different drugs of abuse effect changes in gene expression that converge in common molecular pathways. Microarray analysis was employed to assay brain gene expression in postmortem anterior prefrontal cortex (aPFC) from 42 human cocaine, cannabis and/or phencyclidine abuse cases and 30 control cases, which were characterized by toxicology and drug abuse history. Common transcriptional changes were demonstrated for a majority of drug abuse cases (N = 34), representing a number of consistently changed functional classes: Calmodulin-related transcripts (CALM1, CALM2, CAMK2B) were decreased, while transcripts related to cholesterol biosynthesis and trafficking (FDFT1, APOL2, SCARB1), and Golgi/endoplasmic reticulum (ER) functions (SEMA3B, GCC1) were all increased. Quantitative PCR validated decreases in calmodulin 2 (CALM2) mRNA and increases in apolipoprotein L, 2 (APOL2) and semaphorin 3B (SEMA3B) mRNA for individual cases. A comparison between control cases with and without cardiovascular disease and elevated body mass index indicated that these changes were not due to general cellular and metabolic stress, but appeared specific to the use of drugs. Therefore, humans who abused cocaine, cannabis and/or phencyclidine share a decrease in transcription of calmodulin-related genes and increased transcription related to lipid/cholesterol and Golgi/ER function. These changes represent common molecular features of drug abuse, which may underlie changes in synaptic function and plasticity that could have important ramifications for decision-making capabilities in drug abusers

    Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC) is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5), catechol-<it>O</it>-methyltransferase, and monoamine oxidase (A and B) in the developing human DLPFC (6 weeks -50 years).</p> <p>Results</p> <p>Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p < 0.001) then gradually declined to adulthood. Similarly, mRNA levels of dopamine receptors D2S (p < 0.001) and D2L (p = 0.003) isoforms, monoamine oxidase A (p < 0.001) and catechol-<it>O</it>-methyltransferase (p = 0.024) were significantly higher in neonates and infants as was catechol-<it>O</it>-methyltransferase protein (32 kDa, p = 0.027). In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002) and dopamine D1 receptor protein expression increased throughout development (p < 0.001) with adults having the highest D1 protein levels (p ≤ 0.01). Monoamine oxidase B mRNA and protein (p < 0.001) levels also increased significantly throughout development. Interestingly, dopamine D5 receptor mRNA levels negatively correlated with age (r = -0.31, p = 0.018) in an expression profile opposite to that of the dopamine D1 receptor.</p> <p>Conclusions</p> <p>We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.</p

    Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia

    Get PDF
    While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05). Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1) gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia

    Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.</p> <p>Methods</p> <p>We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.</p> <p>Results</p> <p>Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.</p> <p>Conclusion</p> <p>Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.</p

    Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function

    Get PDF
    DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm infants (birth<33 weeks gestation) and healthy controls (birth>37 weeks), and a genome-wide analysis of DNAm was performed; diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented, and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25 gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural development and function. Differential methylation analysis has identified several promising candidate genes for understanding the genetic/epigenetic basis of preterm brain injury
    corecore