17 research outputs found

    Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease

    Get PDF
    Triatoma infestans is the most important Chagas disease vector in South America. Two main evolutionary lineages, named Andean and non-Andean, have been recognized by geographical distribution, phenetic and genetic characteristics. One of the main differences is the genomic size, varying over 30% in their haploid DNA content. Here we realize a genome wide analysis to compare the repetitive genome fraction (repeatome) between both lineages in order to identify the main repetitive DNA changes occurred during T. infestans differentiation process. RepeatExplorer analysis using Illumina reads showed that both lineages exhibit the same amount of non-repeat sequences, and that satellite DNA is by far the major component of repetitive DNA and the main responsible for the genome size differentiation between both lineages. We characterize 42 satellite DNA families, which are virtually all present in both lineages but with different amount in each lineage. Furthermore, chromosomal location of satellite DNA by fluorescence in situ hybridization showed that genomic variations in T. infestans are mainly due to satellite DNA families located on the heterochromatic regions. The results also show that many satDNA families are located on the euchromatic regions of the chromosomes

    Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi

    Get PDF
    Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi's genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a 'core compartment' and a 'disruptive compartment' which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes

    Genotype and phenotype correlations in diabetic patients in Uruguay

    Full text link
    ABSTRACT. To differentiate among different types of diabetes is becom-ing an increasingly challenging task. We investigated whether the patient’s genetic profile is useful to identify the particular type of diabetes, to deter-mine the corresponding hyperglycemia pathogenesis and treat accordingly. Three hundred and thirty-eight diabetic patients, diagnosed according to American Diabetes Association criteria, were recruited from 2004 to 2008 in diabetes health reference centers. We analyzed the major gene for type 1 diabetes susceptibility (HLA DQ/DR). In order to improve our understand-ing of the pathogenesis of the resulting hyperglycemia and to implement a more adequate treatment for the patients, we reclassified our sample ac-1353 ©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 8 (4): 1352-1358 (2009) Genotype and phenotype correlations in diabetic patients cording to the presence or absence of the genetic markers. We found that a higher percentage of people than expected have immunological disease, in

    Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endothelial dysfunction has been proposed as the underlying cause of diabetic angiopathy that eventually leads to cardiovascular disease, the major cause of death in diabetes. We recently demonstrated the ameliorating effect of regular vitamin D intake on the glycemic status of patients with type 2 diabetes (T2D). In this study, the effects of improvement of vitamin D status on glycemic status, lipid profile and endothelial biomarkers in T2D subjects were investigated.</p> <p>Methods</p> <p>Subjects with T2D were randomly allocated to one of the two groups to receive either plain yogurt drink (PYD; containing 170 mg calcium and no vitamin D/250 mL, n<sub>1 </sub>= 50) or vitamin D3-fortified yogurt drink (FYD; containing 170 mg calcium and 500 IU/250 mL, n<sub>2 </sub>= 50) twice a day for 12 weeks. Anthropometric measures, glycemic status, lipid profile, body fat mass (FM) and endothelial biomarkers including serum endothelin-1, E-selectin and matrix metalloproteinase (MMP)-9 were evaluated at the beginning and after the 12-week intervention period.</p> <p>Results</p> <p>The intervention resulted in a significant improvement in fasting glucose, the Quantitative Insulin Check Index (QUICKI), glycated hemoglobin (HbA1c), triacylglycerols, high-density lipoprotein cholesterol (HDL-C), endothelin-1, E-selectin and MMP-9 in FYD compared to PYD (<it>P </it>< 0.05, for all). Interestingly, difference in changes of endothelin-1, E-selectin and MMP-9 concentrations in FYD compared to PYD (-0.35 ± 0.63 versus -0.03 ± 0.55, <it>P </it>= 0.028; -3.8 ± 7.3 versus 0.95 ± 8.3, <it>P </it>= 0.003 and -2.3 ± 3.7 versus 0.44 ± 7.1 ng/mL, respectively, <it>P </it>< 0.05 for all), even after controlling for changes of QUICKI, FM and waist circumference, remained significant for endothelin-1 and MMP-9 (<it>P </it>= 0.009 and <it>P </it>= 0.005, respectively) but disappeared for E-selectin (<it>P </it>= 0.092). On the contrary, after controlling for serum 25(OH)D, the differences disappeared for endothelin-1(<it>P </it>= 0.066) and MMP-9 (<it>P </it>= 0.277) but still remained significant for E-selectin (<it>P </it>= 0.011).</p> <p>Conclusions</p> <p>Ameliorated vitamin D status was accompanied by improved glycemic status, lipid profile and endothelial biomarkers in T2D subjects. Our findings suggest both direct and indirect ameliorating effects of vitamin D on the endothelial biomarkers.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01236846">NCT01236846</a></p

    Chagas vectors Panstrongylus chinai (Del Ponte, 1929) and Panstrongylus howardi (Neiva, 1911): chromatic forms or true species?

    Get PDF
    Background: Chagas disease is a parasitic infection transmitted by “kissing bugs” (Hemiptera: Reduviidae: Triatominae) that has a huge economic impact in Latin American countries. The vector species with the upmost epidemiological importance in Ecuador are Rhodnius ecuadoriensis (Lent & Leon, 1958) and Triatoma dimidiata (Latreille, 1811). However, other species such as Panstrongylus howardi (Neiva, 1911) and Panstrongylus chinai (Del Ponte, 1929) act as secondary vectors due to their growing adaptation to domestic structures and their ability to transmit the parasite to humans. The latter two taxa are distributed in two different regions, they are allopatric and differ mainly by their general color. Their relative morphological similarity led some authors to suspect that P. chinai is a melanic form of P. howardi. Methods: The present study explored this question using different approaches: antennal phenotype; geometric morphometrics of heads, wings and eggs; cytogenetics; molecular genetics; experimental crosses; and ecological niche modeling. Results: The antennal morphology, geometric morphometrics of head and wing shape and cytogenetic analysis were unable to show distinct differences between the two taxa. However, geometric morphometrics of the eggs, molecular genetics, ecological niche modeling and experimental crosses including chromosomal analyses of the F1 hybrids, in addition to their coloration and current distribution support the hypothesis that P. chinai and P. howardi are separate species. Conclusions: Based on the evidence provided here, P. howardi and P. chinai should not be synonymized. They represent two valid, closely related species

    Cystic fibrosis in Uruguay

    No full text
    We conducted clinical and genetic analyses of 52 cystic fibrosis (CF) patients in Uruguay, which is about half of the known affected individuals in the country. A relatively high proportion had a mild presentation, characterized by pancreatic sufficiency (28%), a strong pulmonary component (97%), and borderline sweat electrolyte measurements (25%). Mutational analysis of CF chromosomes demonstrated a relatively low incidence of the ΔF508 allele (40%) and a large number of other cystic fibrosis conductance regulator mutations, with an overall detection rate of about 71%. Fifteen different mutations were detected in our patients: ΔF508, G542X, R1162X, G85E, N1303K, R334W, R75Q, R74W, D1270N, W1282X, ΔI507, 2789+5G→A, R1066C, -816C/T, R553X, as well as RNA splicing variant IVS8-5T. This group of Uruguayan CF patients has some characteristics in common with other populations of similar origin (Hispanics), as well as some unique characteristics.link_to_OA_fulltex

    A defect in the RNA-processing protein HNRPDL causes limb-girdle muscular dystrophy 1G (LGMD1G).

    No full text
    Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. More than 20 genes with autosomal recessive (LGMD2A to LGMD2Q) and autosomal dominant inheritance (LGMD1A to LGMD1H) have been mapped/identified to date. Mutations are known for six among the eight mapped autosomal dominant forms: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin-3), LGMD1D (desmin), LGMD1E (DNAJB6), and more recently for LGMD1F (transportin-3). Our group previously mapped the LGMD1G gene at 4q21 in a Caucasian-Brazilian family. We now mapped a Uruguayan family with patients displaying a similar LGMD1G phenotype at the same locus. Whole genome sequencing identified, in both families, mutations in the HNRPDL gene. HNRPDL is a heterogeneous ribonucleoprotein family member, which participates in mRNA biogenesis and metabolism. Functional studies performed in S. cerevisiae showed that the loss of HRP1 (yeast orthologue) had pronounced effects on both protein levels and cell localizations, and yeast proteome revealed dramatic reorganization of proteins involved in RNA-processing pathways. In vivo analysis showed that hnrpdl is important for muscle development in zebrafish, causing a myopathic phenotype when knocked down. The present study presents a novel association between a muscular disorder and a RNA-related gene and reinforces the importance of RNA binding/processing proteins in muscle development and muscle disease. Understanding the role of these proteins in muscle might open new therapeutic approaches for muscular dystrophies
    corecore