8 research outputs found

    The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders.

    Get PDF
    The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease

    Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses.

    Get PDF
    Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies

    Glycocalyx dynamics and the inflammatory response of genetically modified porcine endothelial cells.

    Get PDF
    Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TN

    Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival

    Get PDF
    Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNF alpha were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs

    Presence of Donor Lymph Nodes Within Vascularized Composite Allotransplantation Ameliorates VEGF-C-mediated Lymphangiogenesis and Delays the Onset of Acute Rejection.

    No full text
    BACKGROUND The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA). METHODS Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker. RESULTS Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration. CONCLUSIONS This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection

    Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation

    Get PDF
    Background: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. Methods: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient’s kidney, liver and coagulation functions. Results: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation

    Cold non‐ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig‐to‐baboon xenotransplantation

    No full text
    Background: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. Methods: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient’s kidney, liver and coagulation functions. Results: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. Conclusions: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation

    Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation?

    No full text
    Background: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations. Recently, we reported the stepwise optimization of pig-to-baboon orthotopic cardiac xenotransplantation finally resulting in consistent success, with 4 recipients surviving 90 (n = 2), 182, and 195 days. Here, we report on 4 additional recipients, supporting the efficacy of our procedure. Results: The first 2 additional recipients succumbed to porcine cytomegalovirus (PCMV) infections on Days 15 and 27, respectively. In 2 further experiments, PCMV infections were successfully avoided, and 3-months survival was achieved. Throughout all the long-term experiments, heart, liver, and renal functions remained within normal ranges. Post-mortem cardiac diameters were slightly increased when compared with that at the time of transplantation but with no detrimental effect. There were no signs of thrombotic microangiopathy. The current regimen enabled the prolonged survival and function of orthotopic cardiac xenografts in altogether 6 of 8 baboons, of which 4 were now added. These results exceed the threshold set by the Advisory Board of the International Society for Heart and Lung Transplantation. Conclusions: The results of our current and previous experimental cardiac xenotransplantations together fulfill for the first time the pre-clinical efficacy suggestions. PCMV-positive donor animals must be avoided
    corecore