783 research outputs found
Occurrence of Lake Chub, Couesius plumbeus, in Northern Labrador
Lake Chub (Couesius plumbeus) were recently found in seven previously undocumented locations in northern Labrador. These populations represent the first recorded accounts of this species in the Labrador region north of the Churchill River drainage and east of the George River. Lake Chub likely invaded this region via dispersal routes provided by eastern spillways of glacial Lake Naskaupi
Lattice Green's function approach to the solution of the spectrum of an array of quantum dots and its linear conductance
In this paper we derive general relations for the band-structure of an array
of quantum dots and compute its transport properties when connected to two
perfect leads. The exact lattice Green's functions for the perfect array and
with an attached adatom are derived. The expressions for the linear conductance
for the perfect array as well as for the array with a defect are presented. The
calculations are illustrated for a dot made of three atoms. The results derived
here are also the starting point to include the effect of electron-electron and
electron-phonon interactions on the transport properties of quantum dot arrays.
Different derivations of the exact lattice Green's functions are discussed
Ground-layer wavefront reconstruction from multiple natural guide stars
Observational tests of ground layer wavefront recovery have been made in open
loop using a constellation of four natural guide stars at the 1.55 m Kuiper
telescope in Arizona. Such tests explore the effectiveness of wide-field seeing
improvement by correction of low-lying atmospheric turbulence with ground-layer
adaptive optics (GLAO). The wavefronts from the four stars were measured
simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x
5 array of square subapertures across the pupil of the telescope, allowing for
wavefront reconstruction up to the fifth radial Zernike order. We find that the
wavefront aberration in each star can be roughly halved by subtracting the
average of the wavefronts from the other three stars. Wavefront correction on
this basis leads to a reduction in width of the seeing-limited stellar image by
up to a factor of 3, with image sharpening effective from the visible to near
infrared wavelengths over a field of at least 2 arc minutes. We conclude that
GLAO correction will be a valuable tool that can increase resolution and
spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.
Recommended from our members
Effects of endotoxin exposure on childhood asthma risk are modified by a genetic polymorphism in ACAA1
<p>Abstract</p> <p>Background</p> <p>Polymorphisms in the endotoxin-mediated TLR4 pathway genes have been associated with asthma and atopy. We aimed to examine how genetic polymorphisms in innate immunity pathways interact with endotoxin to influence asthma risk in children.</p> <p>Methods</p> <p>In a previous analysis of 372 children from the Boston Home Allergens and the Connecticut Childhood Asthma studies, 7 SNPs in 6 genes (CARD15, TGFB1, LY96, ACAA1, DEFB1 and IFNG) involved in innate immune pathways were associated with asthma, and 5 SNPs in 3 genes (CD80, STAT4, IRAK2) were associated with eczema. We tested these SNPs for interaction with early life endotoxin exposure (n = 291), in models for asthma and eczema by age 6.</p> <p>Results</p> <p>We found a significant interaction between endotoxin and a SNP (rs156265) in ACAA1 (p = 0.0013 for interaction). Increased endotoxin exposure (by quartile) showed protective effects for asthma in individuals with at least one copy of the minor allele (OR = 0.39 per quartile increase in endotoxin, 95% CI 0.15 to 1.01). Endotoxin exposure did not reduce the risk of asthma in children homozygous for the major allele.</p> <p>Conclusion</p> <p>Our findings suggest that protective effects of endotoxin exposure on asthma may vary depending upon the presence or absence of a polymorphism in ACAA1.</p
A study of indoor carbon dioxide levels and sick leave among office workers
BACKGROUND: A previous observational study detected a strong positive relationship between sick leave absences and carbon dioxide (CO(2)) concentrations in office buildings in the Boston area. The authors speculated that the observed association was due to a causal effect associated with low dilution ventilation, perhaps increased airborne transmission of respiratory infections. This study was undertaken to explore this association. METHODS: We conducted an intervention study of indoor CO(2) levels and sick leave among hourly office workers employed by a large corporation. Outdoor air supply rates were adjusted periodically to increase the range of CO(2) concentrations. We recorded indoor CO(2) concentrations every 10 minutes and calculated a CO(2) concentration differential as a measure of outdoor air supply per person by subtracting the 1â3 a.m. average CO(2) concentration from the same-day 9 a.m. â 5 a.m. average concentration. The metric of CO(2) differential was used as a surrogate for the concentration of exhaled breath and for potential exposure to human source airborne respiratory pathogens. RESULTS: The weekly mean, workday, CO(2) concentration differential ranged from 37 to 250 ppm with a peak CO(2) concentration above background of 312 ppm as compared with the American Society of Heating, Refrigeration and Air-conditioning Engineers (ASHRAE) recommended maximum differential of 700 ppm. We determined the frequency of sick leave among 294 hourly workers scheduled to work approximately 49,804.2 days in the study areas using company records. We found no association between sick leave and CO(2) differential CONCLUSIONS: The CO(2) differential was in the range of very low values, as compared with the ASHRAE recommended maximum differential of 700 ppm. Although no effect was found, this study was unable to test whether higher CO(2) differentials may be associated with increased sick leave
Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order
We discuss application of the physical QCD effective charge ,
defined via the heavy-quark potential, in perturbative calculations at
next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie
prescription for fixing the renormalization scales, the resulting series are
automatically and naturally scale and scheme independent, and represent
unambiguous predictions of perturbative QCD. We consider in detail such
commensurate scale relations for the annihilation ratio
and the Bjorken sum rule. In both cases the improved predictions are in
excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review
Influenza A (H3) illness and viral aerosol shedding from symptomatic naturally infected and experimentally infected cases
BackgroundIt has long been known that nasal inoculation with influenza A virus produces asymptomatic to febrile infections. Uncertainty persists about whether these infections are sufficiently similar to natural infections for studying humanâtoâhuman transmission.MethodsWe compared influenza A viral aerosol shedding from volunteers nasally inoculated with A/Wisconsin/2005 (H3N2) and college community adults naturally infected with influenza A/H3N2 (2012â2013), selected for influenzaâlike illness with objectively measured fever or a positive Quidel QuickVue A&B test. Propensity scores were used to control for differences in symptom presentation observed between experimentally and naturally infected groups.ResultsEleven (28%) experimental and 71 (86%) natural cases shed into fine particle aerosols (P [less than] .001). The geometric mean (geometric standard deviation) for viral positive fine aerosol samples from experimental and natural cases was 5.1E + 3 (4.72) and 3.9E + 4 (15.12) RNA copies/half hour, respectively. The 95th percentile shedding rate was 2.4 log10 greater for naturally infected cases (1.4E + 07 vs 7.4E + 04). Certain influenzaâlike illnessârelated symptoms were associated with viral aerosol shedding. The almost complete lack of symptom severity distributional overlap between groups did not support propensity scoreâadjusted shedding comparisons. ConclusionsDue to selection bias, the natural and experimental infections had limited symptom severity distributional overlap precluding valid, propensity scoreâadjusted comparison. Relative to the symptomatic naturally infected cases, where high aerosol shedders were found, experimental cases did not produce high aerosol shedders. Studying the frequency of aerosol shedding at the highest observed levels in natural infections without selection on symptoms or fever would support helpful comparisons
Effect of cannabis use in people with chronic non-cancer pain prescribed opioids: findings from a 4-year prospective cohort study
Background Interest in the use of cannabis and cannabinoids to treat chronic non-cancer pain is increasing, because of their potential to reduce opioid dose requirements. We aimed to investigate cannabis use in people living with chronic non-cancer pain who had been prescribed opioids, including their reasons for use and perceived effectiveness of cannabis; associations between amount of cannabis use and pain, mental health, and opioid use; the effect of cannabis use on pain severity and interference over time; and potential opioid-sparing effects of cannabis. Methods The Pain and Opioids IN Treatment study is a prospective, national, observational cohort of people with chronic non-cancer pain prescribed opioids. Participants were recruited through community pharmacies across Australia, completed baseline interviews, and were followed up with phone interviews or self-complete questionnaires yearly for 4 years. Recruitment took place from August 13, 2012, to April 8, 2014. Participants were asked about lifetime and past year chronic pain conditions, duration of chronic non-cancer pain, pain self-efficacy, whether pain was neuropathic, lifetime and past 12-month cannabis use, number of days cannabis was used in the past month, and current depression and generalised anxiety disorder. We also estimated daily oral morphine equivalent doses of opioids. We used logistic regression to investigate cross-sectional associations with frequency of cannabis use, and lagged mixed-effects models to examine temporal associations between cannabis use and outcomes. Findings 1514 participants completed the baseline interview and were included in the study from Aug 20, 2012, to April 14, 2014. Cannabis use was common, and by 4-year follow-up, 295 (24%) participants had used cannabis for pain. Interest in using cannabis for pain increased from 364 (33%) participants (at baseline) to 723 (60%) participants (at 4 years). At 4-year follow-up, compared with people with no cannabis use, we found that participants who used cannabis had a greater pain severity score (risk ratio 1·14, 95% CI 1·01-1·29, for less frequent cannabis use; and 1·17, 1·03-1·32, for daily or near-daily cannabis use), greater pain interference score (1·21, 1·09-1·35; and 1·14, 1·03-1·26), lower pain self-efficacy scores (0·97, 0·96-1·00; and 0·98, 0·96-1·00), and greater generalised anxiety disorder severity scores (1·07, 1·03-1·12; and 1·10, 1·06-1·15). We found no evidence of a temporal relationship between cannabis use and pain severity or pain interference, and no evidence that cannabis use reduced prescribed opioid use or increased rates of opioid discontinuation. Interpretation Cannabis use was common in people with chronic non-cancer pain who had been prescribed opioids, but we found no evidence that cannabis use improved patient outcomes. People who used cannabis had greater pain and lower self-efficacy in managing pain, and there was no evidence that cannabis use reduced pain severity or interference or exerted an opioid-sparing effect. As cannabis use for medicinal purposes increases globally, it is important that large well designed clinical trials, which include people with complex comorbidities, are conducted to determine the efficacy of cannabis for chronic non-cancer pain
Finite size effects and the mixed quark-hadron phase in neutron stars
We demonstrate that the form and location (not the size or spacing) of the
energetically preferred geometrical structure of the crystalline quark-hadron
mixed phase in a neutron star is very sensitive to finite size terms beyond the
surface term. We consider two independent approaches of including further
finite size terms, namely the multiple reflection expansion of the bag model
and an effective surface tension description. Thus care should be taken in any
model requiring detailed knowledge of these crystalline structures.Comment: 8 pages, 5 figures, Revtex. (May 13, submitted to PRC
- âŠ