1,506 research outputs found

    Effective field theories and spin-wave excitations in helical magnets

    Full text link
    We consider two classes of helical magnets. The first one has magnetic ordering close to antiferromagnet and the second one has magnetic ordering close to ferromagnet. The first case is relevant to cuprate superconductors and the second case is realized in FeSrO3_3 and FeCaO3_3. We derive the effective field theories for these cases and calculate corresponding excitation spectra. We demonstrate that the "hourglass" spin-wave dispersion observed experimentally in cuprates is a fingerprint of the "antiferromagnetic spin spiral state". We also show that quantum fluctuations are important for the "ferromagnetic spin spiral", they influence qualitative features of the spin-wave dispersion.Comment: 14 pages, 11 figure

    Relativistic Coulomb Green's function in dd-dimensions

    Full text link
    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential Zα/r-Z\alpha/r are derived for the arbitrary space dimensionality dd. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.Comment: 9 page

    Coulomb corrections to the Delbrueck scattering amplitude at low energies

    Full text link
    In this article, we study the Coulomb corrections to the Delbrueck scattering amplitude. We consider the limit when the energy of the photon is much less than the electron mass. The calculations are carried out in the coordinate representation using the exact relativistic Green function of an electron in a Coulomb field. The resulting relative corrections are of the order of a few percent for scattering on for a large charge of the nucleus. We compare the corrections with the corresponding ones calculated through the dispersion integral of the pair production cross section and also with the magnetic loop contribution to the g-factor of a bound electron. The last one is in a good agreement with our results but the corrections calculated through the dispersion relation are not.Comment: 8 pages, 6 figure

    Radiative corrections and parity nonconservation in heavy atoms

    Get PDF
    The self-energy and the vertex radiative corrections to the effect of parity nonconservation in heavy atoms are calculated analytically in orders Z alpha^2 and Z^2 alpha^3 ln(lambda_C/r_0), where lambda_C and r_0 being the Compton wavelength and the nuclear radius, respectively. The value of the radiative correction is -0.85% for Cs and -1.41% for Tl. Using these results we have performed analysis of the experimental data on atomic parity nonconservation. The obtained values of the nuclear weak charge, Q_W=-72.90(28)_{exp}(35)_{theor} for Cs, and Q_W=-116.7(1.2)_{exp}(3.4)_{theor} for Tl, agree with predictions of the standard model. As an application of our approach we have also calculated analytically dependence of the Lamb shift on the finite nuclear size.Comment: 4 pages, 4 figure

    Strained tetragonal states and Bain paths in metals

    Full text link
    Paths of tetragonal states between two phases of a material, such as bcc and fcc, are called Bain paths. Two simple Bain paths can be defined in terms of special imposed stresses, one of which applies directly to strained epitaxial films. Each path goes far into the range of nonlinear elasticity and reaches a range of structural parameters in which the structure is inherently unstable. In this paper we identify and analyze the general properties of these paths by density functional theory. Special examples include vanadium, cobalt and copper, and the epitaxial path is used to identify an epitaxial film as related uniquely to a bulk phase.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let

    Bose-Einstein Condensation from a Rotating Thermal Cloud: Vortex Nucleation and Lattice Formation

    Get PDF
    We develop a stochastic Gross-Pitaveskii theory suitable for the study of Bose-Einstein condensation in a {\em rotating} dilute Bose gas. The theory is used to model the dynamical and equilibrium properties of a rapidly rotating Bose gas quenched through the critical point for condensation, as in the experiment of Haljan et al. [Phys. Rev. Lett., 87, 21043 (2001)]. In contrast to stirring a vortex-free condensate, where topological constraints require that vortices enter from the edge of the condensate, we find that phase defects in the initial non-condensed cloud are trapped en masse in the emerging condensate. Bose-stimulated condensate growth proceeds into a disordered vortex configuration. At sufficiently low temperature the vortices then order into a regular Abrikosov lattice in thermal equilibrium with the rotating cloud. We calculate the effect of thermal fluctuations on vortex ordering in the final gas at different temperatures, and find that the BEC transition is accompanied by lattice melting associated with diminishing long range correlations between vortices across the system.Comment: 15 pages, 12 figure

    First-passage and first-exit times of a Bessel-like stochastic process

    Get PDF
    We study a stochastic process XtX_t related to the Bessel and the Rayleigh processes, with various applications in physics, chemistry, biology, economics, finance and other fields. The stochastic differential equation is dXt=(nD/Xt)dt+2DdWtdX_t = (nD/X_t) dt + \sqrt{2D} dW_t, where WtW_t is the Wiener process. Due to the singularity of the drift term for Xt=0X_t = 0, different natures of boundary at the origin arise depending on the real parameter nn: entrance, exit, and regular. For each of them we calculate analytically and numerically the probability density functions of first-passage times or first-exit times. Nontrivial behaviour is observed in the case of a regular boundary.Comment: 15 pages, 6 figures, submitted to Physical Review

    Studies of New Vector Resonances at the CLIC Multi-TeV e+e- Collider

    Get PDF
    Several models predict the existence of new vector resonances in the multi-TeV region, which can be produced in high energy e+e- collisions in the s-channel. In this paper we review the existing limits on the masses of these resonances from LEP/SLC and TEVATRON data and from atomic parity violation in some specific models. We study the potential of a multi-TeV e+e- collider, such as CLIC, for the determination of their properties and nature.Comment: 17 pages, 16 EPS figures, uses JHEP3.cl

    Nuclear structure corrections in the energy spectra of electronic and muonic deuterium

    Get PDF
    The one-loop nuclear structure corrections of order (Z alpha)^5 to the Lamb shift and hyperfine splitting of the deuterium are calculated. The contribution of the deuteron structure effects to the isotope shift (ep)-(ed), (mu p)-(mu d) in the interval (1S - 2S) is obtained on the basis of modern experimental data on the deuteron electromagnetic form factors. The comparison with the similar contributions to the Lamb shift for electronic and muonic hydrogen shows, that the relative contribution due to the nucleus structure increases when passing from the hydrogen to the deuterium.Comment: Talk presented at the Conference "Physics of Fundamental Interactions" of the Nuclear Physics Section of the Physics Department of RAS, ITEP, Moscow, 2-6 December, 2002; 8 pages, REVTE
    corecore