6,196 research outputs found

    Measurement of kinematic and nuclear dependence of R = σ_L/σ_T in deep inelastic electron scattering

    Get PDF
    We report results on a precision measurement of the ratio R=σ_L/σ_T in deep inelastic electron-nucleon scattering in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤10 (GeV/c)^2. Our results show, for the first time, a clear falloff of R with increasing Q^2. Our R results are in agreement with QCD predictions only when corrections for target mass effects and some additional higher twist effects are included. At small x, the data on R favor structure functions with a large gluon contribution. We also report results on the differences R_A-R_D and the cross section ratio σ^A/σ^D between Fe and Au nuclei and the deuteron. Our results for R_A-R_D are consistent with zero for all x, Q^2 indicating that possible contributions to R from nuclear higher twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The ratios σ^A/σ^D from all recent experiments, at all x, Q^2 values, are now in agreement

    Measurement of the Difference in R=σ_L/σ_T and of σ^A/σ^D in Deep-Inelastic e-D, e-Fe, and e-Au Scattering

    Get PDF
    We measured the differences in R=σ_L/σ_T and the cross-section ratio σA/σD in deep-inelastic electron scattering from D, Fe, and Au nuclei in the kinematic range 0.2≤x≤0.5 and 1≤Q^2≤5 (Gev/c)^2. Our results for R^A-R^D are consistent with zero for all x and Q^2, indicating that possible contributions to R from nuclear higher-twist effects and spin-0 constituents in nuclei are not different from those in nucleons. The European Muon Collaboration effect is reconfirmed, and the low-x data from all recent experiments, at all Q^2, are now in agreement

    Radiative corrections for (e,e′p) reactions at GeV energies

    Get PDF
    A general framework for applying radiative corrections to (e,e′p) coincidence reactions at GeV energies is presented, with special emphasis to higher-order bremsstrahlung effects, radiation from the scattered hadron, and the validity of peaking approximations. The sensitivity to the assumptions made in practically applying radiative corrections to (e,e′p) data is extensively discussed. The general framework is tested against experimental data of the 1H(e,e′p) reaction at momentum transfer values larger than 1.0 (GeV/c)^2, where radiative processes become a dominant source of uncertainty. The formulas presented here can easily be modified for any other electron-induced coincidence reaction

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Longitudinal and Transverse Response Functions in ^(56)Fe(e,e') at Momentum Transfer near 1 GeV/c

    Get PDF
    Inclusive electron-scattering cross sections have been measured for ^(56)Fe in the quasielastic region at electron energies between 0.9 and 4.3 GeV, at scattering angles of 15° and 85°. Longitudinal and transverse response functions at a q of 1.14 GeV/c have been extracted using a Rosenbluth separation. The experimental Coulomb sum has been obtained with aid of an extrapolation. The longitudinal response function, after correction for Coulomb distortion, is lower than quasifree-scattering-model predictions at the quasielastic peak and on the high-ω side

    Full abstraction for fair testing in CCS

    Get PDF
    In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is fully abstract for fair testing equivalence. The proof relies on a new algebraic notion called playground, which represents the 'rule of the game'. From any playground, two languages, equipped with labelled transition systems, are derived, as well as a strong, functional bisimulation between them.Comment: 15 pages, to appear in CALCO '13. To appear Lecture notes in computer science (2013
    • …
    corecore