110 research outputs found

    Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.

    Get PDF
    A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations

    Water Enables Efficient CO2 Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal-Organic Framework.

    Get PDF
    Supported by increasingly available reserves, natural gas is achieving greater adoption as a cleaner-burning alternative to coal in the power sector. As a result, carbon capture and sequestration from natural gas-fired power plants is an attractive strategy to mitigate global anthropogenic CO2 emissions. However, the separation of CO2 from other components in the flue streams of gas-fired power plants is particularly challenging due to the low CO2 partial pressure (∼40 mbar), which necessitates that candidate separation materials bind CO2 strongly at low partial pressures (≤4 mbar) to capture ≥90% of the emitted CO2. High partial pressures of O2 (120 mbar) and water (80 mbar) in these flue streams have also presented significant barriers to the deployment of new technologies for CO2 capture from gas-fired power plants. Here, we demonstrate that functionalization of the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) with the cyclic diamine 2-(aminomethyl)piperidine (2-ampd) produces an adsorbent that is capable of ≥90% CO2 capture from a humid natural gas flue emission stream, as confirmed by breakthrough measurements. This material captures CO2 by a cooperative mechanism that enables access to a large CO2 cycling capacity with a small temperature swing (2.4 mmol CO2/g with ΔT = 100 °C). Significantly, multicomponent adsorption experiments, infrared spectroscopy, magic angle spinning solid-state NMR spectroscopy, and van der Waals-corrected density functional theory studies suggest that water enhances CO2 capture in 2-ampd-Mg2(dobpdc) through hydrogen-bonding interactions with the carbamate groups of the ammonium carbamate chains formed upon CO2 adsorption, thereby increasing the thermodynamic driving force for CO2 binding. In light of the exceptional thermal and oxidative stability of 2-ampd-Mg2(dobpdc), its high CO2 adsorption capacity, and its high CO2 capture rate from a simulated natural gas flue emission stream, this material is one of the most promising adsorbents to date for this important separation

    Amine Dynamics in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks.

    Get PDF
    Variable-temperature 15N solid-state NMR spectroscopy is used to uncover the dynamics of three diamines appended to the metal-organic framework Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate), an important family of CO2 capture materials. The results imply both bound and free amine nitrogen environments exist when diamines are coordinated to the framework open Mg2+ sites. There are rapid exchanges between two nitrogen environments for all three diamines, the rates and energetics of which are quantified by 15N solid-state NMR data and corroborated by density functional theory calculations and molecular dynamics simulations. The activation energy for the exchange provides a measure of the metal-amine bond strength. The unexpected negative correlation between the metal-amine bond strength and CO2 adsorption step pressure reveals that metal-amine bond strength is not the only important factor in determining the CO2 adsorption properties of diamine-appended Mg2(dobpdc) metal-organic frameworks

    Archaeal Hel308 suppresses recombination through a catalytic switch that controls DNA annealing

    Get PDF
    Hel308 helicases promote genome stability in archaea and are conserved in metazoans, where they are known as HELQ. Their helicase mechanism is well characterised, but it is unclear how they specifically contribute to genome stability in archaea. We show here that a highly conserved motif of Hel308/HELQ helicases (motif IVa, F/YHHAGL) modulates both DNA unwinding and a newly identified strand annealing function of archaeal Hel308. A single amino acid substitution in motif IVa results in hyper-active DNA helicase and annealase activities of purified Hel308 in vitro. All-atom molecular dynamics simulations using Hel308 crystal structures provided a molecular basis for these differences between mutant and wild type Hel308. In archaeal cells, the same mutation results in 160000-fold increased recombination, exclusively as gene conversion (non-crossover) events. However, crossover recombination is unaffected by the motif IVa mutation, as is cell viability or DNA damage sensitivity. By contrast, cells lacking Hel308 show impaired growth, increased sensitivity to DNA cross-linking agents, and only moderately increased recombination. Our data reveal that archaeal Hel308 suppresses recombination and promotes DNA repair, and that motif IVa in the RecA2 domain acts as a catalytic switch to modulate the separable recombination and repair activities of Hel308

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    Get PDF
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2γR_{2\gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of 20°\approx 20\degree to 80°80\degree. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°12\degree, as well as symmetric M{\o}ller/Bhabha calorimeters at 1.29°1.29\degree. A total integrated luminosity of 4.5~fb1^{-1} was collected. In the extraction of R2γR_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2γR_{2\gamma}, presented here for a wide range of virtual photon polarization 0.456<ϵ<0.9780.456<\epsilon<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.&lt;p&gt;&lt;/p&gt; Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).&lt;p&gt;&lt;/p&gt; Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.&lt;p&gt;&lt;/p&gt; Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    Regional impacts of warming on biodiversity and biomass in high latitude stream ecosystems across the Northern Hemisphere

    Get PDF
    Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships
    corecore