54 research outputs found
Dvoretzky type theorems for multivariate polynomials and sections of convex bodies
In this paper we prove the Gromov--Milman conjecture (the Dvoretzky type
theorem) for homogeneous polynomials on , and improve bounds on
the number in the analogous conjecture for odd degrees (this case
is known as the Birch theorem) and complex polynomials. We also consider a
stronger conjecture on the homogeneous polynomial fields in the canonical
bundle over real and complex Grassmannians. This conjecture is much stronger
and false in general, but it is proved in the cases of (for 's of
certain type), odd , and the complex Grassmannian (for odd and even and
any ). Corollaries for the John ellipsoid of projections or sections of a
convex body are deduced from the case of the polynomial field conjecture
A comparison principle for functions of a uniformly random subspace
This note demonstrates that it is possible to bound the expectation of an
arbitrary norm of a random matrix drawn from the Stiefel manifold in terms of
the expected norm of a standard Gaussian matrix with the same dimensions. A
related comparison holds for any convex function of a random matrix drawn from
the Stiefel manifold. For certain norms, a reversed inequality is also valid.Comment: 8 page
Notes about the Caratheodory number
In this paper we give sufficient conditions for a compactum in
to have Carath\'{e}odory number less than , generalizing an old result of
Fenchel. Then we prove the corresponding versions of the colorful
Carath\'{e}odory theorem and give a Tverberg type theorem for families of
convex compacta
How Fitch-Margoliash Algorithm can Benefit from Multi Dimensional Scaling
Whatever the phylogenetic method, genetic sequences are often described as strings of characters, thus molecular sequences can be viewed as elements of a multi-dimensional space. As a consequence, studying motion in this space (ie, the evolutionary process) must deal with the amazing features of high-dimensional spaces like concentration of measured phenomenon
- …