11 research outputs found

    Rotordynamic forces in labyrinth seals: Theory and experiment

    Get PDF
    A theoretical and experimental investigation of the aerodynamic forces generated by a single gland labyrinth seal executing a simultaneous spinning/whirling motion has been conducted. A lumped parameter model for a single gland seal with coupling to an upstream cavity with leakage is developed along with an appropriate solution technique. From this theory, it is shown that the presence of the upstream cavity can, in some cases, augment the cross-stiffness and direct damping by a factor of four. The parameters that govern the coupling are presented along with predictions on their influence. A simple uncoupled model is used to identify the mechanisms responsible for cross force generation. This reduced system is nondimensionalized and the physical significance of the reduced parameters is discussed. Closed form algebraic formulas are given for some simple limiting cases. It is also shown that the total cross-force predicted by the uncoupled model can be represented as the sum of an ideal component due to an inviscid flow with entry swirl and a viscous part due to the change in swirl created by friction inside the gland. The frequency dependent ideal part is solely responsible for the rotordynamic direct damping. The facility designed and built to measure these frequency dependent forces is described. Experimental data confirm the validity and usefulness of this ideal/viscous decomposition. A method for calculating the damping coefficients based on the force decomposition using only the static measurements is presented. Experimental results supporting the predicted cross force augmentation due to the effect of upstream coupling are presented

    Integrated Electric Gas Turbine

    Get PDF
    PatentAn integrated electric gas turbine comprises a compressor that includes a plurality of airfoils. An electric motor is arranged to drive the compressor, and a combustor is arranged to receive compressed air from the compressor and further arranged to receive a fuel input. A turbine is arranged to receive the combustion gases from the combustor. A generator is integrated with the turbine and arranged to provide a power output. A controller is connected between the generator and the electric motor and arranged to direct a portion of the power output from the generator to the electric motor

    Mechanical and Aerospace Engineering

    Get PDF
    This brochure explains the Mechanical and Aerospace Engineering program at the Naval Postgraduate School. Sections include: Advancing your career, student research, degree programs, special programs, research and distance learning programs.The Mechanical and Aerospace Engineering (MAE) Department, the founding department of the Naval Postgraduate School in 1909, offers a wide range of graduate degree programs including M.S. and Ph.D., in either Mechanical or Astronautical Engineering. The faculty, research staff, and students in MAE conduct fundamental and applied research that supports a wide range of technologies, and operational needs that are critical to National Security. NPS Students come from the U.S. Navy, USAF, USA, USMC, and USCG, and more than 50 countries, and degree programs are open to DoD civilians and DoD contractors. We invite you to learn more about our department’s degree programs and our research and see what we have to offer.Naval Postgraduate School (U.S.

    Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1115/1.4003821An experimental investigation has been conducted to characterize the influence of Reynolds number and surface roughness magnitude and location on compressor cascade performance. Flow field surveys have been conducted in a low-speed, linear compressor cascade. Pressure, velocity, and loss have been measured via a five-hole probe, pitot probe, and pressure taps on the blades. Four different roughness magnitudes, Ra values of 0.38 lm (polished), 1.70 lm (baseline), 2.03 lm (rough 1), and 2.89 lm (rough 2), have been tested. Furthermore, various roughness locations have been examined. In addition to the as manufactured (baseline) and entirely rough blade cases, blades with roughness covering the leading edge, pressure side, and 5%, 20%, 35%, 50%, and 100% of suction side from the leading edge have been studied. All of the tests have been carried out for Reynolds numbers ranging from 300,000 to 640,000. For Reynolds numbers under 500,000, the tested roughnesses do not significantly degrade compressor blade loading or loss. However, loss and blade loading become sensitive to roughness at Reynolds numbers above 550,000. Cascade performance is more sensitive to roughness on the suction side than pressure side. Furthermore, roughness on the aft 2=3 of suction side surface has a greater influence on loss. For a given roughness location, there exists a Reynolds number at which loss begins to significantly increase. Finally, increasing the roughness area on the suction surface from the leading edge reduces the Reynolds number at which the loss begins to increase.The authors gratefully acknowledge financial support from the BK21 Program of the Korean Government, the Institute of Advanced Machinery and Design of Seoul National University, the Korea Institute of Energy Technology Evaluation and Planning, and the Naval Postgraduate School. Lastly, the authors thank William B. Roberts for his helpful comments and insight

    MEMS-Scale Turbomachinery Based Vacuum Roughing Pump

    Get PDF
    The article of record as published may be found a http://doi.org/10.1115/1.4027971This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.Defense Advanced Research Projects AgencyApproved for public release; distribution is unlimited

    MEMS-Scale Turbomachinery Based Vacuum Roughing Pump

    No full text
    The article of record as published may be found a http://doi.org/10.1115/1.4027971This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.Defense Advanced Research Projects AgencyApproved for public release; distribution is unlimited

    Effect of Leading Edge Roughness and Reynolds Number on Compressor Profile Loss

    Get PDF
    Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition GT2013 June 3-7, 2013, San Antonio, Texas, USA GT2013-95487An experimental investigation has been conducted to characterize the influence of leading edge roughness and Reynolds number on compressor cascade profile loss. Tests have been conducted in a low-speed linear compressor cascade at Reynolds numbers between 210,000 and 640,000. Blade loading and loss have been measured with pressure taps and pneumatic probes. In addition, a two-component laser-doppler velocimeter (LDV) has been used to measure the boundary layer velocity profiles and turbulence levels at various chordwise locations near the blade suction surface. The “smooth” blade has a centerline-averaged roughness (Ra) of 0.62 μm. The “rough” blade is roughened by covering the leading edge of the “smooth” blade, including 2% of the pressure side and 2% of the suction side, with a 100 μm-thick tape with a roughness Ra of 4.97 μm. At Reynolds numbers ranging from 210,000 to 380,000, the leading edge roughness decreases loss slightly. At Reynolds number of 210,000, the leading edge roughness reduces the size of the suction side laminar separation bubble and turbulence level in the turbulent boundary layer after reattachment. Thus, the leading edge roughness reduces displacement and momentum thicknesses as well as profile loss at Reynolds number of 210,000. However, the same leading edge roughness increases loss significantly for Re = 450,000 ∼ 640,000. At Reynolds number of 640,000, the leading edge roughness decreases the magnitude of the favorable pressure gradient for axial chordwise locations less than 0.41 and induces turbulent separation for axial chordwise locations greater than 0.63, drastically increasing loss. Thus, roughness limited to the leading edge still has a profound effect on the compressor flow field.Korean GovernmentNaval Postgraduate SchoolKorea Institute of Energy Technology Evaluation and Planning (KETEP) (Project No. 20101020100030

    Electric ship research at the Naval Postgraduate School

    Get PDF
    This paper gives an overview of current research at the Naval Postgraduate School on electric ships. Various academic departments and groups are studying directed energy weapons, electromagnetic railguns and aircraft launchers, power systems, infrared and acoustic signature reduction, and thermal management for electric ships. Researchers in each of these areas describe their recent and ongoing work.Office of Naval Researc
    corecore