208 research outputs found

    Hybrid control for low-regular nonlinear systems: application to an embedded control for an electric vehicle

    Get PDF
    This note presents an embedded automatic control strategy for a low consumption vehicle equipped with an "on/off" engine. The main difficulties are the hybrid nature of the dynamics, the non smoothness of the dynamics of each mode, the uncertain environment, the fast changing dynamics, and low cost/ low consumption constraints for the control device. Human drivers of such vehicles frequently use an oscillating strategy, letting the velocity evolve between fixed lower and upper bounds. We present a general justification of this very simple and efficient strategy, that happens to be optimal for autonomous dynamics, robust and easily adaptable for real-time control strategy. Effective implementation in a competition prototype involved in low-consumption races shows that automatic velocity control achieves performances comparable with the results of trained human drivers. Major advantages of automatic control are improved robustness and safety. The total average power consumption for the control device is less than 10 mW

    Support Vector Committee machines

    Get PDF
    Colloque avec actes et comité de lecture. internationale.International audienceThis paper proposes a mathematical programming framework for combining SVMs with possibly different kernels. Compared to single SVMs, the advantage of this approach is twofold: it creates SVMs with local domains of expertise leading to local enlargements of the margin, and it allows the use of simple linear kernels combined with a fixed boolean operation that is particularly well suited for building dedicated hardware

    Flatness of Switched Linear Discrete-Time Systems

    Full text link

    Joint phase-recovery and demodulation-decoding of AIS signals received by satellite

    Get PDF
    International audienceThis paper presents a demodulation algorithm for automatic identification system (AIS) signals received by a satellite. The main contribution of this work is to consider the phase recovery problem for an unknown modulation index, coupled with a time-varying phase shift. The proposed method is based on a demodulator introduced in a previous paper based on a Viterbi-type algorithm applied to an extended trellis. The states of this extended trellis are composed of a trellis-code state and of a cyclic redundancy check state. The bit stuffing mechanism is taken into account by defining special conditional transitions in the extended trellis. This algorithm estimates and tracks the phase shift by modifying the Euclidean distance used in the trellis. Simulation results obtained with and without phase tracking are presented and compared in the context of the AIS system

    Poursuite de phase durant la démodulation et le décodage des signaux AIS reçus par satellite

    Get PDF
    National audienceThis paper presents a demodulation algorithm for automatic identification system (AIS) signals received by a satellite. The main contribution of this work is to consider the phase recovery problem for an unknown modulation index, coupled with a time-varying phase shift. The proposed method is based on a demodulator introduced in a previous paper based on a Viterbi-type algorithm applied to an extended trellis. The states of this extended trellis are composed of a trellis-code state and of a cyclic redundancy check state. The bit stuffing mechanism is taken into account by defining specific conditional transitions in the extended trellis. This algorithm estimates and tracks the phase shift by modifying the Euclidean distance used in the trellis. Simulation results obtained with and without phase tracking are presented and compared in the context of the AIS system.Cet article prĂ©sente un algorithme de dĂ©modulation des signaux du systĂšme d’identification automatique (AIS) reçus par satellite. La principale contribution de ce travail est de considĂ©rer le problĂšme d’estimation de la phase pour un indice de modulation inconnu couplĂ© avec un dĂ©calage de phase variant dans le temps. La mĂ©thode proposĂ©e consiste Ă  Ă©tendre la mĂ©thode de dĂ©modulation prĂ©sentĂ©e dans un prĂ©cĂ©dent article utilisant un algorithme de Viterbi appliquĂ© sur un treillis Ă©tendu. Les Ă©tats de ce treillis Ă©tendu sont composĂ©s d’un Ă©tat du codeur en treillis et d’un Ă©tat du contrĂŽle de redondance cyclique (CRC). Les bits de bourrage sont pris en compte en dĂ©finissant des transitions spĂ©cifiques dans le treillis Ă©tendu. Cet algorithme estime et poursuit le dĂ©calage de phase en modifiant la distance euclidienne utilisĂ©e dans le treillis. Les rĂ©sultats de simulations obtenus avec et sans poursuite de la phase sont prĂ©sentĂ©s et comparĂ©s dans le contexte du systĂšme AI

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    Get PDF
    Dynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in "chaos-based" private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the SelfSynchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    Get PDF
    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform

    Ship localization using AIS signals received by satellite

    Get PDF
    This paper addresses the problem of ship localization by using the messages received by satellites and transmitted by the automatic identification system (AIS). In particular, one considers the localization of ships that do not transmit their actual position in AIS signals. The proposed localization method is based on the least squares algorithm and uses the differences of times of arrival and the carrier frequencies of the messages received by satellite. A modification of this algorithm is proposed to take into account the displacement model of the ships as additional measurements. This modification shows a significant localization improvement

    Optical frequency measurement of the 1S-3S two-photon transition in hydrogen

    Full text link
    This article reports the first optical frequency measurement of the 1S−3S1\mathrm{S}-3\mathrm{S} transition in hydrogen. The excitation of this transition occurs at a wavelength of 205 nm which is obtained with two frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency is measured with an optical frequency comb. The second-order Doppler effect is evaluated from the observation of the motional Stark effect due to a transverse magnetic field perpendicular to the atomic beam. The measured value of the 1S1/2(F=1)−3S1/2(F=1)1\mathrm{S}_{1/2}(F=1)-3\mathrm{S}_{1/2}(F=1) frequency splitting is 2922742936.729(13)MHz2 922 742 936.729 (13) \mathrm{MHz} with a relative uncertainty of 4.5×10−124.5\times10^{-12}. After the measurement of the 1S−2S1\mathrm{S}-2\mathrm{S} frequency, this result is the most precise of the optical frequencies in hydrogen
    • 

    corecore