17 research outputs found

    Root, mycorrhiza and earthworm interactions: their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass

    Get PDF
    Earthworms, arbuscular mycorrhiza fungi (AMF) and roots are important components of the belowground part of terrestrial ecosystem. However, their interacting effects on soil properties and plant growth are still poorly understood. A compartmental experimental design was used in a climate chamber in order to investigate, without phosphorus (P) addition, the single and combined effects of earthworms (Allolobophora chlorotica), AMF (Glomus intraradices) and roots (Allium porrum) on soil structure, nutrient concentration and plant growth. In our experimental conditions, plant roots improved soil structure stability (at the level of macroaggregates) whereas earthworms decreased it. AMF had no effect on soil structure stability but increased P transfer from the soil to the plant and significantly increased plant biomass. Earthworms had no direct influence on P uptake or plant biomass, and the N/P ratio measured in the shoots indicated that P was limiting. Interactions between AMF and earthworms were also observed on total C and N content in the soil and on total root biomass. Their effects varied temporally and between the different soil compartments (bulk soil, rhizosphere and drilosphere). After comparison with other similar studies, we suggest that effects of earthworms and AMF on plant production may depend on the limiting factors in the soil, mainly N or P. Our experiment highlights the importance of measuring physical and chemical soil parameters when studying soil organism interactions and their influence on plant performanc

    Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials

    Get PDF
    Earthworms are considered as key actors of soil processes at different spatial and temporal scales and provide essential ecosystem services linked to climate regulation or primary production. However, little is known about their basic functional roles (e.g. organic matter decomposition, soil structuring processes) in perturbed systems such as urban or alluvial soils. Alluvial soils are characterized by regular physical perturbation through flooding and associated erosion/sedimentation processes which are rather similar to perturbations (e.g. temporal instability, spatial heterogeneity) affecting urban soils. Due to their close soil characteristics, we hypothesized that in both cases, soil functioning is similar with respect to soil fauna activity. Under controlled conditions, our objective was to investigate the effects of two endogeic earthworm species, Allolobophora chlorotica (pink morph) and Aporrectodea rosea (the two most abundant species found in the studied urban site), on soil organic matter (SOM) dynamics and soil structure (network of earthworm burrows) comparing an urban and an alluvial soil. We investigated the growth of individuals (weight gain and reproduction success) and assessed their effects on SOM decomposition (cumulative C–CO2 emission, nitrogen and phosphorus mineralization) and soil structure (macroporosity, total length and connectivity of segments) after one and three months of incubation. Our results showed higher growth of A. rosea in the alluvial soil compared to the urban soil. However, the total length of burrows, carbon and nitrogen mineralization were often higher in the urban soil especially when the two species were combined. This trend can be mainly explained by lower organic matter content found in the urban soil which may influence positively the burrowing activity and negatively the growth of earthworms. Endogeic earthworms appear a key feature of the soil functioning in the urban context through their roles on organic matter transformation, the formation and maintenance of the soil structure

    White lupin leads to increased maize yield through a soil fertility-independent mechanism: a new candidate for fighting Striga hermonthica infestation?

    Get PDF
    Nitrogen (N)-deficiency and lack of phosphorus (P) availability are major constraints to maize yields in Western Kenya. In a two-season field study in the lake Victoria basin, we tested the capacity of white lupin (Lupinus albus (L.), cv. Ultra), as a nitrogen-fixing crop with a highly efficient P-acquisition capacity, to increase maize yields when used as a companion or cover crop, or as a source of organic matter. Each experiment was performed on three different fields (Vertisols) differing in N/P availability, previous cropping history and in levels of infestation by the parasitic weed Striga hermonthica (Del.) Benth. Our results show that white lupin led to significantly higher yields of maize when used as a cover crop. When lupin was grown as a companion crop, it also slightly enhanced the yield of the co-cultivated maize. When lupin shoots were incorporated to the soil, the positive effect of lupin on maize growth was field-dependent and only occurred in the field most heavily infested with S. hermonthica. Despite the beneficial impact on maize yield, no clear effect of lupin on soil N and P availability or on maize N/P uptake were observed. In contrast, lupin significantly inhibited infestation of maize by S. hermonthica: when lupin was grown together with maize in pots inoculated with S. hermonthica, the emergence of the weed was strongly reduced compared to the pots with maize only. This work opens a new range of questions for further research on white lupin and its potential beneficial impact as a S. hermonthica-inhibiting cro

    Impact of two root systems, earthworms and mycorrhizae on the physical properties of an unstable silt loam Luvisol and plant production

    Get PDF
    Background and aims: Soil organisms are known to engineer the soil physical properties, but their impact is difficult to assess and poorly documented. Shrinkage analysis has a good potential for such assessment. This study analyses the effects of mycorrhizae (Glomus intraradices), earthworms (Allolobophora chlorotica) and two plants, Allium porrum (leek) and Petunia hybrida (petunia), on the physical properties of an unstable loamy Luvisol, as well as the biological interactions between the soil organisms. Methods: In addition to soil organism biomass, shrinkage analysis and soil aggregate stability analysis were used to characterize the soil physical properties. Results: The soil aggregate stability, specific volume and structural pores volumes were increased with plant roots compared to control. The drilling effect of roots could not explain the pore volume increase, which was several orders of magnitude larger than the volume of the roots. Leek had larger impact on volumes while petunia mostly increased soil aggregate stability. Mycorrhizae increased the soil stability and the soil volume. Earthworms alone decreased the pore volumes at any pore size, and plant roots mitigated this. Conclusions: Our results highlight (1) the large impact of soil biota on soil physical properties, (2) that their separated effects can either combine or mitigate each other and (3) that the observed changes are varying in intensity according to soil type and plant typ

    Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria

    Get PDF
    Lake sediments in areas close to the outlet of wastewater treatment plants are sinks for pollutants. Bacterial communities in sediments are likely affected by the released effluents, but in turn they might modify the distribution and bioavailability of pollutants. On the shore of Lake Geneva, Switzerland, wastewater from the City of Lausanne is treated and discharged into the lake via an outlet pipe in the Vidy Bay. The objectives of this study were to assess (1) the impact of the treated wastewater release on the bacterial communities in the Vidy Bay sediments and (2) the potential link between bacterial communities and trace metal sediment content. Bacterial community composition and abundance were assessed in sediments collected in three areas with different levels of contamination. The main factors affecting bacterial communities were inferred by linking biological data with chemical analyses on these sediments. Near to the outlet pipe, large quantities of bacterial cells were detected in the three upper most cm (3.2 × 109 cells assessed by microscopy and 1.7 × 1010 copies of the 16S rRNA gene assessed by quantitative PCR, per gram of wet sediment), and the dominant bacterial groups were those typically found in activated sludge (e.g. Acidovorax defluivii and Hydrogenophaga caeni). Three samples in an area further away from the outlet and one sample close to it were characterized by 50 % of endospore-forming Firmicutes (Clostridium spp.) and a clear enrichment in trace metal content. These results highlight the potential role of endospore-forming Firmicutes on transport and deposition of trace metals in sediments

    Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria

    Get PDF
    Lake sediments in areas close to the outlet of wastewater treatment plants are sinks for pollutants. Bacterial communities in sediments are likely affected by the released effluents, but in turn they might modify the distribution and bioavailability of pollutants. On the shore of Lake Geneva, Switzerland, wastewater from the City of Lausanne is treated and discharged into the lake via an outlet pipe in the Vidy Bay. The objectives of this study were to assess (1) the impact of the treated wastewater release on the bacterial communities in the Vidy Bay sediments and (2) the potential link between bacterial communities and trace metal sediment content. Bacterial community composition and abundance were assessed in sediments collected in three areas with different levels of contamination. The main factors affecting bacterial communities were inferred by linking biological data with chemical analyses on these sediments. Near to the outlet pipe, large quantities of bacterial cells were detected in the three upper most cm (3.2×109 cells assessed by microscopy and 1.7×1010 copies of the 16S rRNA gene assessed by quantitative PCR, per gram of wet sediment), and the dominant bacterial groups were those typically found in activated sludge (e.g. Acidovorax defluivii and Hydrogenophaga caeni). Three samples in an area further away from the outlet and one sample close to it were characterized by 50% of endospore-forming Firmicutes (Clostridium spp.) and a clear enrichment in trace metal content. These results highlight the potential role of endospore-forming Firmicutes on transport and deposition of trace metals in sediments
    corecore