15,218 research outputs found

    Landing and catalytic characterization of individual nanoparticles on electrode surfaces

    Get PDF
    We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet dimensions, the background current is low, allowing for the detection of minute current signals with good time resolution. This approach was used to characterize the potential-dependent activity of Au NPs and to measure the catalytic activity of a single NP on a TEM grid, combining electrochemical and physical characterization at the single NP level for the first time. Such measurements open up the possibility of studying the relation between the size, structure and activity of catalyst particles unambiguously

    Thermal electron attachment to F2

    Get PDF
    Rate constants have been measured from 300 to 700 K for thermal electron attachment to F2 using two flowing afterglow–Langmuir probe apparatuses. Dissociative attachment yielding F− is observed with a rate constant of 5.0 ± 1.3 × 10−9 cm3 s−1 at 300 K, rising to 9.6 ± 2.4 × 10−9 cm3 s−1 at 700 K, well below the previously accepted values of McCorkle et al. [D. L.McCorkle, L. G. Christophorou, A. A. Christodoulides, and L. Pichiarella, J. Chem. Phys. 85, 1966 (1986)]. The absolute concentration of F2 reaching the afterglowis verified by measuring the near-collisional rate constant (4.5 ± 1.5 × 10−10 cm3 s−1) for Ar+ + F2→ArF+ + F. Prior attempts to apply R-matrix calculations to the F2 + e− system have failed to explain previously reported thermal and nonthermal attachment rate constants along with high-resolution, low-energy attachment cross sections. The present results are reproduced exceptionally well by R-matrix calculations employing previously calculated resonance widths without adjustment

    Multiparametric MRI and [18F]fluorodeoxyglucose positron emission tomography imaging is a potential prognostic imaging biomarker in recurrent glioblastoma

    Get PDF
    Purpose/objectivesMultiparametric advanced MR and [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging may be important biomarkers for prognosis as well for distinguishing recurrent glioblastoma multiforme (GBM) from treatment-related changes.Methods/materialsWe retrospectively evaluated 30 patients treated with chemoradiation for GBM and underwent advanced MR and FDG-PET for confirmation of tumor progression. Multiparametric MRI and FDG-PET imaging metrics were evaluated for their association with 6-month overall (OS) and progression-free survival (PFS) based on pathological, radiographic, and clinical criteria.Results17 males and 13 females were treated between 2001 and 2014, and later underwent FDG-PET at suspected recurrence. Baseline FDG-PET and MRI imaging was obtained at a median of 7.5 months [interquartile range (IQR) 3.7–12.4] following completion of chemoradiation. Median follow-up after FDG-PET imaging was 10 months (IQR 7.2–13.0). Receiver-operator characteristic curve analysis identified that lesions characterized by a ratio of the SUVmax to the normal contralateral brain (SUVmax/NB index) >1.5 and mean apparent diffusion coefficient (ADC) value of ≤1,400 × 10−6 mm2/s correlated with worse 6-month OS and PFS. We defined three patient groups that predicted the probability of tumor progression: SUVmax/NB index >1.5 and ADC ≤1,400 × 10−6 mm2/s defined high-risk patients (n = 7), SUVmax/NB index ≤1.5 and ADC >1,400 × 10−6 mm2/s defined low-risk patients (n = 11), and intermediate-risk (n = 12) defined the remainder of the patients. Median OS following the time of the FDG-PET scan for the low, intermediate, and high-risk groups were 23.5, 10.5, and 3.8 months (p < 0.01). Median PFS were 10.0, 4.4, and 1.9 months (p = 0.03). Rates of progression at 6-months in the low, intermediate, and high-risk groups were 36, 67, and 86% (p = 0.04).ConclusionRecurrent GBM in the molecular era is associated with highly variable outcomes. Multiparametric MR and FDG-PET biomarkers may provide a clinically relevant, non-invasive and cost-effective method of predicting prognosis and improving clinical decision making in the treatment of patients with suspected tumor recurrence

    An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    Get PDF
    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion cells configured in series and parallel combinations to create nominal 14.4 volt, 3 Ah packs (4s-2p). These modules have accumulated approximately 3000 cycles. Results on the performance of the cells and modules will be presented in this paper. The life prediction and performance model for Li-ion cells in LEO will be built by analyzing the data statistically and performing regression analysis. Cells are being cycled to failure so that differences in performance trends that occur at different stages in the life of the cell can be observed and accurately modeled. Cell testing is being performed at the Naval Surface Warfare Center in Crane, IN

    Quark-meson coupling model for finite nuclei

    Full text link
    A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.Comment: 33 pages REVTeX plus 2 postscript figure

    Application of long period gratings sensors to respiratory function monitoring

    Get PDF
    A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso showing reasonable agreement with a spirometer used simultaneously to record the volume at the mouth during breathing. The curvature sensors are based upon long period gratings written in a progressive three layered fibre that are insensitive to refractive index changes. The sensor platform consists of the long period grating laid upon a carbon fibre ribbon, which is encapsulated in a low temperature curing silicone rubber. An array of sensors is also used to reconstruct the shape changes of a resuscitation manikin during simulated respiration. The data for reconstruction is obtained by two methods of multiplexing and interrogation: firstly using the transmission spectral profile of the LPG's attenuation bands measured using an optical spectrum analyser; secondly using a derivative spectroscopy technique

    Preserving Derivative Information while Transforming Neuronal Curves

    Full text link
    The international neuroscience community is building the first comprehensive atlases of brain cell types to understand how the brain functions from a higher resolution, and more integrated perspective than ever before. In order to build these atlases, subsets of neurons (e.g. serotonergic neurons, prefrontal cortical neurons etc.) are traced in individual brain samples by placing points along dendrites and axons. Then, the traces are mapped to common coordinate systems by transforming the positions of their points, which neglects how the transformation bends the line segments in between. In this work, we apply the theory of jets to describe how to preserve derivatives of neuron traces up to any order. We provide a framework to compute possible error introduced by standard mapping methods, which involves the Jacobian of the mapping transformation. We show how our first order method improves mapping accuracy in both simulated and real neuron traces under random diffeomorphisms. Our method is freely available in our open-source Python package brainlit

    β-Mn-Type Co8+xZn12–x as a Defect Cubic Laves Phase: Site Preferences, Magnetism, and Electronic Structure

    Get PDF
    The results of crystallographic analysis, magnetic characterization, and theoretical assessment of β-Mn-type Co–Zn intermetallics prepared using high-temperature methods are presented. These β-Mn Co–Zn phases crystallize in the space group P4132 [Pearson symbol cP20; a = 6.3555(7)–6.3220(7)], and their stoichiometry may be expressed as Co8+xZn12–x [1.7(2) \u3c x \u3c 2.2(2)]. According to a combination of single-crystal X-ray diffraction, neutron powder diffraction, and scanning electron microscopy, atomic site occupancies establish clear preferences for Co atoms in the 8c sites and Zn atoms in the 12d sites, with all additional Co atoms replacing some Zn atoms, a result that can be rationalized by electronic structure calculations. Magnetic measurements and neutron powder diffraction of an equimolar Co:Zn sample confirm ferromagnetism in this phase with a Curie temperature of ∼420 K. Neutron powder diffraction and electronic structure calculations using the local spin density approximation indicate that the spontaneous magnetization of this phase arises exclusively from local moments at the Co atoms. Inspection of the atomic arrangements of Co8+xZn12–x reveals that the β-Mn aristotype may be derived from an ordered defect, cubic Laves phase (MgCu2-type) structure. Structural optimization procedures using the Vienna ab initio simulation package (VASP) and starting from the undistorted, defect Laves phase structure achieved energy minimization at the observed β-Mn structure type, a result that offers greater insight into the β-Mn structure type and establishes a closer relationship with the corresponding α-Mn structure (cI58)
    • …
    corecore