8,702 research outputs found

    Revisiting the Thermodynamic Stability of Indomethacin Polymorphs with Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations

    Get PDF
    The two major polymorphs of the active pharmaceutical ingredient indomethacin were studied using a combination of experimental low-frequency vibrational spectroscopies, theoretical solid-state density functional theory and ab initio molecular dynamics calculations. The results enable a complete spectral assignment of the low-frequency IR and Raman spectra, and yield new insight into the energetic and dynamical factors present within the solids to be understood. Ultimately, these results are used to rationalize the thermodynamic properties of the two crystals, which result in a contradiction to the long-held belief that the γ-form is the more stable polymorph at ambient conditions due to its predominant abundance. Overall, the study highlights the combined role that molecular conformation, bulk packing arrangement, and intermolecular forces have on the ultimate properties of pharmaceutical crystals, and the need for detailed analyses into all of these effects in order to predict the properties of materials

    Early pericalcarine atrophy in acute optic neuritis is associated with conversion to multiple sclerosis

    Get PDF
    Background: Previous work showed that pericalcarine cortical volume loss is evident early after presentation with acute clinically isolated optic neuritis (ON). The aims of this study were: (1) to determine whether pericalcarine atrophy in patients with ON is associated with conversion to multiple sclerosis (MS); (2) to investigate whether regional atrophy preferentially affects pericalcarine cortex; and (3) to investigate potential causes of early pericalcarine atrophy using MRI. / Methods: 28 patients with acute ON and 10 controls underwent structural MRI (brain and optic nerves) and were followed-up over 12 months. Associations between the development of MS, optic nerve, optic radiation and pericalcarine cortical damage measures were investigated using multiple linear regression models. Regional cortical volumetric differences between patients and controls were calculated using t tests. / Results: The development of MS at 12 months was associated with greater whole brain and optic radiation lesion loads, shorter acute optic nerve lesions and smaller pericalcarine cortical volume at baseline. Regional atrophy was not evident in other sampled cortical regions. Pericalcarine atrophy was not directly associated with whole brain lesion load, optic radiation measures or optic nerve lesion length. However, the association between pericalcarine atrophy and MS was not independent of these parameters. / Conclusions: Reduced pericalcarine cortical volumes in patients with early clinically isolated ON were associated with the development of MS but volumes of other cortical regions were not. Hence pericalcarine cortical regions appear particularly susceptible to early damage. These findings could be explained by a combination of pathological effects to visual grey and white matter in patients with ON

    Restrictive ID policies: implications for health equity

    Get PDF
    We wish to thank Synod Community Services for their critical work to develop, support, and implement a local government-issued ID in Washtenaw County, MI. We also thank Yousef Rabhi of the Michigan House of Representatives and Janelle Fa'aola of the Washtenaw ID Task Force, Lawrence Kestenbaum of the Washtenaw County Clerk's Office, Sherriff Jerry Clayton of the Washtenaw County Sherriff's Office, and the Washtenaw ID Task Force for their tireless commitment to developing and supporting the successful implementation of the Washtenaw ID. Additionally, we thank Vicenta Vargas and Skye Hillier for their contributions to the Washtenaw ID evaluation. We thank the Curtis Center for Research and Evaluation at the University of Michigan School of Social Work, the National Center for Institutional Diversity at the University of Michigan, and the University of California-Irvine Department of Chicano/Latino Studies and Program in Public Health for their support of the Washtenaw ID community-academic research partnership. Finally, we thank the reviewers for their helpful comments on earlier drafts of this manuscript. (Curtis Center for Research and Evaluation at the University of Michigan School of Social Work; National Center for Institutional Diversity at the University of Michigan; University of California-Irvine Department of Chicano/Latino Studies; Program in Public Health)https://link.springer.com/content/pdf/10.1007/s10903-017-0579-3.pdfPublished versio

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Rapidly rotating second-generation progenitors for the blue hook stars of {\omega} Cen

    Full text link
    Horizontal Branch stars belong to an advanced stage in the evolution of the oldest stellar galactic population, occurring either as field halo stars or grouped in globular clusters. The discovery of multiple populations in these clusters, that were previously believed to have single populations gave rise to the currently accepted theory that the hottest horizontal branch members (the blue hook stars, which had late helium-core flash ignition, followed by deep mixing) are the progeny of a helium-rich "second generation" of stars. It is not known why such a supposedly rare event (a late flash followed by mixing) is so common that the blue hook of {\omega} Cen contains \sim 30% of horizontal branch stars 10 , or why the blue hook luminosity range in this massive cluster cannot be reproduced by models. Here we report that the presence of helium core masses up to \sim 0.04 solar masses larger than the core mass resulting from evolution is required to solve the luminosity range problem. We model this by taking into account the dispersion in rotation rates achieved by the progenitors, whose premain sequence accretion disc suffered an early disruption in the dense environment of the cluster's central regions where second-generation stars form. Rotation may also account for frequent late-flash-mixing events in massive globular clusters.Comment: 44 pages, 8 figures, 2 tables in Nature, online june 22, 201

    入出力データ長に着目した入出力制御法に関する研究

    Get PDF
    We report time resolved studies of optically induced circular dichroism in room temperature GaAs/AlGaAs multiple quantum wells to resolve spin-dependent and spin-independent contributions to exciton saturation. Phase-space filling and Coulomb contributions were separated by spin dependence while the effects of broadening and screening were distinguished using different pulse bandwidths. Bound and free carrier contributions were compared bq observing the temporal dependence of the circular dichroism on femtosecond timescales, The spin independent contribution to exciton saturation was found to be independent of whether the carriers were bound or free. (C) 1997 American Institute of Physics.</p

    Which activities threaten independent living of elderly when becoming problematic : inspiration for meaningful service robot functionality

    Get PDF
    Purpose: In light of the increasing elderly population and the growing demand for home care, the potential of robot support is given increasing attention. In this paper, an inventory of activities was made that threaten independent living of elderly when becoming problematic. Results will guide the further development of an existing service robot, the Care-O-bot®. Method: A systematic literature search of PubMed was performed, focused on the risk factors for institutionalization. Additionally, focus group sessions were conducted in the Netherlands, United Kingdom and France. In these focus group sessions, problematic activities threatening the independence of elderly people were discussed. Three separate target groups were included in the focus group sessions: (1) elderly persons (n = 41), (2) formal caregivers (n = 40) and (3) informal caregivers (n = 32). Results: Activities within the International Classification of Functioning domains mobility, self-care, and interpersonal interaction and relationships were found to be the most problematic. Conclusions: A distinct set of daily activities was identified that may threaten independent living, but no single activity could be selected as the main activity causing a loss of independence as it is often a combination of problematic activities that is person-specific. Supporting the problematic activities need not involve a robotic solution Read More: http://informahealthcare.com/doi/abs/10.3109/17483107.2013.840861Peer reviewe

    Lowering the glycemic index of white bread using a white bean extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phase 2<sup>® </sup>is a dietary supplement derived from the common white kidney bean (Phaseolus vulgaris). Phase 2 has been shown to inhibit alpha-amylase, the complex carbohydrate digesting enzyme, in vitro. The inhibition of alpha-amylase may result in the lowering of the effective Glycemic Index (GI) of certain foods. The objective of this study was to determine whether the addition of Phase 2 would lower the GI of a commercially available high glycemic food (white bread).</p> <p>Methods</p> <p>An open-label 6-arm crossover study was conducted with 13 randomized subjects. Standardized GI testing was performed on white bread with and without the addition of Phase 2 in capsule and powder form, each in dosages of 1500 mg, 2000 mg, and 3000 mg. Statistical analysis was performed by one-way ANOVA of all seven treatment groups using unadjusted multiple comparisons (t tests) to the white bread control.</p> <p>Results</p> <p>For the capsule formulation, the 1500 mg dose had no effect on the GI and the 2000 mg and 3000 mg capsule doses caused insignificant reductions in GI. For the powder, the 1500 mg and 2000 mg doses caused insignificant reductions in the GI, and the 3000 mg dose had a significant effect (-20.23 or 34.11%, p = 0.023)</p> <p>Conclusion</p> <p>Phase 2 white bean extract appears to be a novel and potentially effective method for reducing the GI of existing foods without modifying their ingredient profile.</p> <p>Trial Registration</p> <p>Trial Registration: ISRCTN50347345</p

    The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing.</p> <p>Results</p> <p>The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales.</p> <p>Conclusion</p> <p>MSI addresses the need for a flexible and high-performing agent based model of the immune system.</p
    corecore