104,050 research outputs found

    Exploiting classical nucleation theory for reverse self-assembly

    Full text link
    In this paper we introduce a new method to design interparticle interactions to target arbitrary crystal structures via the process of self-assembly. We show that it is possible to exploit the curvature of the crystal nucleation free-energy barrier to sample and select optimal interparticle interactions for self-assembly into a desired structure. We apply this method to find interactions to target two simple crystal structures: a crystal with simple cubic symmetry and a two-dimensional plane with square symmetry embedded in a three-dimensional space. Finally, we discuss the potential and limits of our method and propose a general model by which a functionally infinite number of different interaction geometries may be constructed and to which our reverse self-assembly method could in principle be applied.Comment: 7 pages, 6 figures. Published in the Journal of Chemical Physic

    Single-level resonance parameters fit nuclear cross-sections

    Get PDF
    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total

    A Feasibility Study on Miniaturizing an Automatic Amino Acid Analyzer for Use on Apollo Mission and Mars Voyager Mission Progress Report, Jan. - Jun. 1967

    Get PDF
    Miniaturizing n automatic amino acid analyzer for use on Apollo mission and Mars Voyager missio

    A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake

    Get PDF
    We present a new analysis of very deep Chandra observations of the galaxy cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the Intracluster Medium (ICM) on length scales of ~ 1 kpc near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the BCG that appears to arise from the bulk motion of Abell 1795's cool core. To the south of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending for distances of ~ 50 kpc spatially coincident with previously identified filaments of H-alpha emission. Gas at similar temperatures is also detected in adjacent regions without any H-alpha emission. The X-ray gas coincident with the H-alpha filament has been measured to be cooling spectroscopically at a rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star formation rate in this region as inferred from UV observations, suggesting that the star formation in this filament as inferred by its Hα\alpha and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with Hα\alpha emission is observed just to the west of the H-alpha filament, suggesting that it may have been uplifted by Abell 1795's central active galaxy. Further simulations of cool core sloshing and AGN feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the H-alpha emission is so localized with respect to the cool X-ray gas despite the evidence for a catastrophic cooling flow.Comment: 14 Pages, 10 Figures, Resubmitted to ApJ after first referee report, Higher Resolution Figures available upon reques

    SONTRAC—a scintillating plastic fiber tracking detector for neutron and proton imaging spectroscopy

    Get PDF
    SONTRAC (SOlar Neutron TRACking imager and spectrometer) is a conceptual instrument intended to measure the energy and incident direction of 20–150 MeV neutrons produced in solar flares. The intense neutron background in a low-Earth orbit requires that imaging techniques be employed to maximize an instrument’s signal-to-noise ratio. The instrument is comprised of mutually perpendicular, alternating layers of parallel, scintillating, plastic fibers that are viewed by optoelectronic devices. Two stereoscopic views of recoil proton tracks are necessary to determine the incident neutron’s direction and energy. The instrument can also be used as a powerful energetic proton imager. Data from a fully functional 3-d prototype are presented. Early results indicate that the instrument’s neutron energy resolution is approximately 10% with the neutron incident direction determined to within a few degrees

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks

    Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 3: ARAMIS overview

    Get PDF
    An overview of automation, robotics, and machine intelligence systems (ARAMIS) is provided. Man machine interfaces, classification, and capabilities are considered

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks
    • …
    corecore