5,038 research outputs found

    Growth of Intermediate-Mass Black Holes in Globular Clusters

    Full text link
    We present results of numerical simulations of sequences of binary-single scattering events of black holes in dense stellar environments. The simulations cover a wide range of mass ratios from equal mass objects to 1000:10:10 solar masses and compare purely Newtonian simulations to simulations in which Newtonian encounters are interspersed with gravitational wave emission from the binary. In both cases, the sequence is terminated when the binary's merger time due to gravitational radiation is less than the arrival time of the next interloper. We find that black hole binaries typically merge with a very high eccentricity (0.93 < e < 0.95 pure Newtonian; 0.85 < e < 0.90 with gravitational wave emission) and that adding gravitational wave emission decreases the time to harden a binary until merger by ~ 30% to 40%. We discuss the implications of this work for the formation of intermediate-mass black holes and gravitational wave detection.Comment: 28 pages including 9 figures, submitted to Ap

    Intermediate Mass Black Hole Induced Quenching of Mass Segregation in Star Clusters

    Full text link
    In many theoretical scenarios it is expected that intermediate-mass black holes (IMBHs, with masses M ~ 100-10000 solar masses) reside at the centers of some globular clusters. However, observational evidence for their existence is limited. Several previous numerical investigations have focused on the impact of an IMBH on the cluster dynamics or brightness profile. Here we instead present results from a large set of direct N-body simulations including single and binary stars. These show that there is a potentially more detectable IMBH signature, namely on the variation of the average stellar mass between the center and the half-light radius. We find that the existence of an IMBH quenches mass segregation and causes the average mass to exhibit only modest radial variation in collisionally relaxed star clusters. This differs from when there is no IMBH. To measure this observationally requires high resolution imaging at the level of that already available from the Hubble Space Telescope (HST) for the cores of a large sample of galactic globular clusters. With a modest additional investment of HST time to acquire fields around the half-light radius, it will be possible to identify the best candidate clusters to harbor an IMBH. This test can be applied only to globulars with a half-light relaxation time less than or equal to 1 Gyr, which is required to guarantee efficient energy equipartition due to two-body relaxation.Comment: 15 pages, 3 figures, ApJ, in pres

    Four-Body Effects in Globular Cluster Black Hole Coalescence

    Get PDF
    In the high density cores of globular clusters, multibody interactions are expected to be common, with the result that black holes in binaries are hardened by interactions. It was shown by Sigurdsson & Hernquist (1993) and others that 10 solar mass black holes interacting exclusively by three-body encounters do not merge in the clusters themselves, because recoil kicks the binaries out of the clusters before the binaries are tight enough to merge. Here we consider a new mechanism, involving four-body encounters. Numerical simulations by a number of authors suggest that roughly 20-50% of binary-binary encounters will eject one star but leave behind a stable hierarchical triple. If the orbital plane of the inner binary is strongly tilted with respect to the orbital plane of the outer object, a secular Kozai resonance, first investigated in the context of asteroids in the Solar System, can increase the eccentricity of the inner body significantly. We show that in a substantial fraction of cases the eccentricity is driven to a high enough value that the inner binary will merge by gravitational radiation, without a strong accompanying kick. Thus the merged object remains in the cluster; depending on the binary fraction of black holes and the inclination distribution of newly-formed hierarchical triples, this mechanism may allow massive black holes to accumulate through successive mergers in the cores of globular clusters. It may also increase the likelihood that stellar-mass black holes in globular clusters will be detectable by their gravitational radiation.Comment: Submitted to ApJ Letters (includes emulateapj.sty

    Three-body equations of motion in successive post-Newtonian approximations

    Get PDF
    There are periodic solutions to the equal-mass three-body (and N-body) problem in Newtonian gravity. The figure-eight solution is one of them. In this paper, we discuss its solution in the first and second post-Newtonian approximations to General Relativity. To do so we derive the canonical equations of motion in the ADM gauge from the three-body Hamiltonian. We then integrate those equations numerically, showing that quantities such as the energy, linear and angular momenta are conserved down to numerical error. We also study the scaling of the initial parameters with the physical size of the triple system. In this way we can assess when general relativistic results are important and we determine that this occur for distances of the order of 100M, with M the total mass of the system. For distances much closer than those, presumably the system would completely collapse due to gravitational radiation. This sets up a natural cut-off to Newtonian N-body simulations. The method can also be used to dynamically provide initial parameters for subsequent full nonlinear numerical simulations.Comment: 8 pages, 9 figure

    Implications of the PSR 1257+12 Planetary System for Isolated Millisecond Pulsars

    Get PDF
    The first extrasolar planets were discovered in 1992 around the millisecond pulsar PSR 1257+12. We show that recent developments in the study of accretion onto magnetized stars, plus the existence of the innermost, moon-sized planet in the PSR 1257+12 system, suggest that the pulsar was born with approximately its current rotation frequency and magnetic moment. If so, this has important implications for the formation and evolution of neutron star magnetic fields as well as for the formation of planets around pulsars. In particular, it suggests that some and perhaps all isolated millisecond pulsars may have been born with high spin rates and low magnetic fields instead of having been recycled by accretion.Comment: 17 pages including one figure, uses aaspp4, accepted by Ap

    Can Social Policies Improve Health? A Systematic Review and Meta-Analysis of 38 Randomized Trials.

    Get PDF
    Policy Points Social policies might not only improve economic well-being, but also health. Health policy experts have therefore advocated for investments in social policies both to improve population health and potentially reduce health system costs. Since the 1960s, a large number of social policies have been experimentally evaluated in the United States. Some of these experiments include health outcomes, providing a unique opportunity to inform evidence-based policymaking. Our comprehensive review and meta-analysis of these experiments find suggestive evidence of health benefits associated with investments in early life, income support, and health insurance interventions. However, most studies were underpowered to detect health outcomes. CONTEXT: Insurers and health care providers are investing heavily in nonmedical social interventions in an effort to improve health and potentially reduce health care costs. METHODS: We performed a systematic review and meta-analysis of all known randomized social experiments in the United States that included health outcomes. We reviewed 5,880 papers, reports, and data sources, ultimately including 61 publications from 38 randomized social experiments. After synthesizing the main findings narratively, we conducted risk of bias analyses, power analyses, and random-effects meta-analyses where possible. Finally, we used multivariate regressions to determine which study characteristics were associated with statistically significant improvements in health outcomes. FINDINGS: The risk of bias was low in 17 studies, moderate in 11, and high in 33. Of the 451 parameter estimates reported, 77% were underpowered to detect health outcomes. Among adequately powered parameters, 49% demonstrated a significant health improvement, 44% had no effect on health, and 7% were associated with significant worsening of health. In meta-analyses, early life and education interventions were associated with a reduction in smoking (odds ratio [OR] = 0.92, 95% confidence interval [CI] 0.86-0.99). Income maintenance and health insurance interventions were associated with significant improvements in self-rated health (OR = 1.20, 95% CI 1.06-1.36, and OR = 1.38, 95% CI 1.10-1.73, respectively), whereas some welfare-to-work interventions had a negative impact on self-rated health (OR = 0.77, 95% CI 0.66-0.90). Housing and neighborhood trials had no effect on the outcomes included in the meta-analyses. A positive effect of the trial on its primary socioeconomic outcome was associated with higher odds of reporting health improvements. We found evidence of publication bias for studies with null findings. CONCLUSIONS: Early life, income, and health insurance interventions have the potential to improve health. However, many of the included studies were underpowered to detect health effects and were at high or moderate risk of bias. Future social policy experiments should be better designed to measure the association between interventions and health outcomes

    Possibilities for pedagogy in Further Education: Harnessing the abundance of literacy

    Get PDF
    In this report, it is argued that the most salient factor in the contemporary communicative landscape is the sheer abundance and diversity of possibilities for literacy, and that the extent and nature of students' communicative resources is a central issue in education. The text outlines the conceptual underpinnings of the Literacies for Learning in Further Education project in a social view of literacy, and the associated research design, methodology and analytical framework. It elaborates on the notion of the abundance of literacies in students' everyday lives, and on the potential for harnessing these as resources for the enhancement of learning. It provides case studies of changes in practice that have been undertaken by further education staff in order to draw upon students' everyday literacy practices on Travel and Tourism and Multimedia courses. It ends with some of the broad implications for conceptualising learning that arise from researching through the lens of literacy practices

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    ā€˜O sibling, where art thou?ā€™ ā€“ a review of avian sibling recognition with respect to the mammalian literature

    Get PDF
    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ā€˜mixing potentialā€™ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ā€˜direct familiarisationā€™ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ā€˜indirect familiarisationā€™ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic

    A Dirac-Hartree-Bogoliubov approximation for finite nuclei

    Get PDF
    We develop a complete Dirac-Hartree-Fock-Bogoliubov approximation to the ground state wave function and energy of finite nuclei. We apply it to spin-zero proton-proton and neutron-neutron pairing within the Dirac-Hartree-Bogoliubov approximation (we neglect the Fock term), using a zero-range approximation to the relativistic pairing tensor. We study the effects of the pairing on the properties of the even-even nuclei of the isotopic chains of Ca, Ni and Sn (spherical) and Kr and Sr (deformed), as well as the NN=28 isotonic chain, and compare our results with experimental data and with other recent calculations.Comment: 43 pages, RevTex, 13 figure
    • ā€¦
    corecore