16,977 research outputs found
Anatomy and Histology of the Male Reproductive Complex of the Onion Maggot Fly, \u3ci\u3eDelia Antiqua\u3c/i\u3e, (Diptera: Anthomyiidae) Including Some Comparisons With \u3ci\u3eD. Platura\u3c/i\u3e and \u3ci\u3eD. Radicum\u3c/i\u3e
In Delia antiqua (Meigen) (Diptera: Anthomyiidae), the male reproductive complex is composed of a pair of testes, paired vas deferens connecting the testes to the anterior ejaculatory duct, and a pair of paragonial (accessory) glands. Each D. antiqua paragonial gland consists of a single layer of secretory epithelial cells surrounded by a thin sheath of muscle tissue. The paragonial cells appear to be largely homogeneous in form, however a minor number of cells exhibit unique staining characteristics distinct from the main cells of the gland. This is preliminary evidence for a secondary cell type as has been found for Drosophila and Aedes paragonial glands. In contrast to the testis and vas deferens, where most of the growth occurs during the pupal stage, the D. antiqua paragonial glands expanded markedly due to secretory accumulation during the first days of adult life. Based on histochemical analyses, the paragonial secretion contained abundant protein, with evidence of glycoprotein. The reproductive complex in all three Delia species (D. antiqua, D. radicum (Bouche) and D. platura (Meigen)) appears similar, with the exception of size differences and timing of paragonial secretory accumulation and sperm maturation. Paragonial glands of D. radicum were the largest in both length and width, and only this species possessed abundant sperm upon eclosion. Of the three species, D. radicum appears most capable of mating immediately after eclosion based on the histology of its reproductive complex, which is consistent with biochemical and behavioral observations made earlier in this laboratory
Interview with James Myers, March 28 & 31, 2011
James Myers was interviewed on March 28 & 31, 2011 by Brad Miller about his childhood, collegiate years and teaching at Gettysburg College. He also discussed Carl Arnold Hanson\u27s presidency, the political unrest during that time, and how the college has changed during his time here.
Length of Interview: 103 minutes
Course Information: Course Title: HIST 300: Historical Method Academic Term: Spring 2011 Course Instructor: Dr. Michael Birkner \u2772
Collection Note: This oral history was selected from the Oral History Collection maintained by Special Collections & College Archives. Transcripts are available for browsing in the Special Collections Reading Room, 4th floor, Musselman Library. GettDigital contains the complete listing of oral histories done from 1978 to the present. To view this list and to access selected digital versions please visit -- http://gettysburg.cdmhost.com/cdm/landingpage/collection/p16274coll
Chemiluminescent Tags for Tracking Insect Movement in Darkness: Application to Moth Photo-Orientation
The flight tracks of Manduca sexta (Lepidoptera: Sphingidae) flying toward a 5 watt incandescent light bulb were recorded under low light conditions with the aid of a camera-mounted photomultiplier and a glowing marker technique. Small felt pads bearing a chemiluminescent (glowi maÂerial, Cyalume®, were affixed to the abdomens of free-flying moths. insects orienting to a dim incandescent bulb were easily visible to the naked eye and were clearly captured on videotape. On their initial approach to the light source, M. sexta were found to orient at a mean angle of -0.220 ± 2.70 (mean ± SEM). The speed of the initial approach flight (OA ± 0.03 m/s) was significantly faster than the speed immediately after passing the light (0.29 ± 0.02 m/s; t =6.4, PM. sexta initially fly approximately at a light source and only after passing it, do they engage in circular flight around the source. M. sexta flight to lights does not entirely match any paths predicted by several light orientation mechanisms, including the commonly invoked light compass theory
Planning for execution monitoring on a planetary rover
A planetary rover will be traversing largely unknown and often unknowable terrain. In addition to geometric obstacles such as cliffs, rocks, and holes, it may also have to deal with non-geometric hazards such as soft soil and surface breakthroughs which often cannot be detected until rover is in imminent danger. Therefore, the rover must monitor its progress throughout a traverse, making sure to stay on course and to detect and act on any previously unseen hazards. Its onboard planning system must decide what sensors to monitor, what landmarks to take position readings from, and what actions to take if something should go wrong. The planning systems being developed for the Pathfinder Planetary Rover to perform these execution monitoring tasks are discussed. This system includes a network of planners to perform path planning, expectation generation, path analysis, sensor and reaction selection, and resource allocation
Development of a Student Handbook for Odessa Junior-Senior High School
This project presents the development of a student handbook for Odessa Junior-Senior High School. The handbook was designed to define the rules, regulations, procedures, requirements, activities and services of Odessa Junior-Senior High School. This is the first comprehensive handbook in the history of the school. The handbook was developed from the handbooks of many other high schools and the school board policy manual of the Odessa School District. Many sections have been approved as to legality. Recommendations include an annual review and revision of the handbook by a committee made up of faculty, administration, parents, school board and students
SONTRAC—a scintillating plastic fiber tracking detector for neutron and proton imaging spectroscopy
SONTRAC (SOlar Neutron TRACking imager and spectrometer) is a conceptual instrument intended to measure the energy and incident direction of 20–150 MeV neutrons produced in solar flares. The intense neutron background in a low-Earth orbit requires that imaging techniques be employed to maximize an instrument’s signal-to-noise ratio. The instrument is comprised of mutually perpendicular, alternating layers of parallel, scintillating, plastic fibers that are viewed by optoelectronic devices. Two stereoscopic views of recoil proton tracks are necessary to determine the incident neutron’s direction and energy. The instrument can also be used as a powerful energetic proton imager. Data from a fully functional 3-d prototype are presented. Early results indicate that the instrument’s neutron energy resolution is approximately 10% with the neutron incident direction determined to within a few degrees
- …