121,534 research outputs found

    Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system

    Get PDF
    A singularly perturbed linear system of second order ordinary differential equations of reaction-diffusion type with given boundary conditions is considered. The leading term of each equation is multiplied by a small positive parameter. These singular perturbation parameters are assumed to be distinct. The components of the solution exhibit overlapping layers. Shishkin piecewise-uniform meshes are introduced, which are used in conjunction with a classical finite difference discretisation, to construct a numerical method for solving this problem. It is proved that the numerical approximations obtained with this method is essentially second order convergent uniformly with respect to all of the parameters

    Composition profiling InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunnelling microscopy

    Get PDF
    This study compares cross-sectional scanning tunnelling microscopy (XSTM) and atom probe tomography (APT). We use epitaxially grown self-assembled InAs quantum dots (QDs) in GaAs as an exemplary material with which to compare these two nanostructural analysis techniques. We studied the composition of the wetting layer and the QDs, and performed quantitative comparisons of the indium concentration profiles measured by each method. We show that computational models of the wetting layer and the QDs, based on experimental data, are consistent with both analytical approaches. This establishes a link between the two techniques and shows their complimentary behaviour, an advantage which we exploit in order to highlight unique features of the examined QD material.Comment: Main article: 8 pages, 6 figures. Appendix: 3 pages, 5 figure

    Inelastic semiclassical Coulomb scattering

    Get PDF
    We present a semiclassical S-matrix study of inelastic collinear electron-hydrogen scattering. A simple way to extract all necessary information from the deflection function alone without having to compute the stability matrix is described. This includes the determination of the relevant Maslov indices. Results of singlet and triplet cross sections for excitation and ionization are reported. The different levels of approximation -- classical, semiclassical, and uniform semiclassical -- are compared among each other and to the full quantum result.Comment: 9 figure

    Alloreactive cytotoxic T lymphocytes generated in the presence of viral- derived peptides show exquisite peptide and MHC specificity

    Get PDF
    The nature of alloreactivity to MHC molecules has been enigmatic, primarily because of the observation that allogeneic responses are considerably stronger than syngeneic responses. To better determine the specificity potential of allogeneic responses, we have generated alloreactive CTL specific for exogenous, viral-derived peptide ligands. This approach allowed us to critically evaluate both the peptide- and MHC-specificity of these alloreactive T cells. Exploiting the accessibility of the H-2Ld class I molecule for exogenous peptide ligands, alloreactive CTL were generated that are specific for either murine cytomegalovirus (MCMV) or lymphocytic choriomeningitis virus (LCMV) peptides bound by Ld alloantigens. Peptide specificity was initially observed in bulk cultures of alloreactive CTL only when tested on peptide-sensitized T2.Ld target cells that have defective presentation of endogenous peptides. Subsequent cloning of bulk alloreactive CTL lines generated to MCMV yielded CTL clones that had exquisitely specific MCMV peptide recognition requirement. All of the MCMV/Ld alloreactive CTL clones were also exquisitely MHC-specific in that none of the CTL clones lysed targets expressing MCMV/Lq complexes, even though Lq differs from Ld by only six amino acid residues and Lq also binds the MCMV peptide. This observation clearly demonstrates that alloreactive CTL are capable of the same degree of specificity for target cell recognition as are syngeneic CTL in MHC-restricted responses
    corecore