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Abstract. A singularly perturbed linear system of second order ordinary differential equa-
tions of reaction-diffusion type with given boundary conditions is considered. The leading
term of each equation is multiplied by a small positive parameter. These singular per-
turbation parameters are assumed to be distinct. The components of the solution exhibit
overlapping layers. Shishkin piecewise–uniform meshes are introduced, which are used in
conjunction with a classical finite difference discretisation, to construct a numerical method
for solving this problem. It is proved that the numerical approximations obtained with this
method are essentially second order convergent uniformly with respect to all of the param-
eters.
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1. Introduction

The following two-point boundary value problem is considered for the singularly
perturbed linear system of second order differential equations

−E~u′′(x) + A(x)~u(x) = ~f(x), x ∈ (0, 1), ~u(0) and ~u(1) given. (1)

Here ~u is a column n−vector, E and A(x) are n×n matrices, E = diag(~ε), ~ε =
(ε1, · · · , εn) with 0 < εi ≤ 1 for all i = 1, . . . , n. The εi are assumed to be
distinct and, for convenience, to have the ordering

ε1 < · · · < εn.

Cases with some of the parameters coincident are not considered here.
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The problem can also be written in the operator form

~L~u = ~f, ~u(0) and ~u(1) given,

where the operator ~L is defined by

~L = −ED2 + A and D2 =
d2

dx2
.

For all x ∈ [0, 1], it is assumed that the components aij(x) of A(x) satisfy the
inequalities

aii(x) >

n∑
j 6=i
j=1

|aij(x)| for 1 ≤ i ≤ n and aij(x) ≤ 0 for i 6= j (2)

and, for some α,

0 < α < min
x∈[0,1]
1≤i≤n

(
n∑

j=1

aij(x)). (3)

The required smoothness of the problem data is assumed wherever necessary. It is
also assumed, without loss of generality, that

max
1≤i≤n

√
εi ≤

√
α

6
. (4)

The norms ‖ ~V ‖= max1≤k≤n |Vk| for any n-vector ~V , ‖ y ‖= sup0≤x≤1 |y(x)| for
any scalar-valued function y and ‖ ~y ‖= max1≤k≤n ‖ yk ‖ for any vector-valued
function ~y are introduced. Throughout the paper C denotes a generic positive con-
stant, which is independent of x and of all singular perturbation and discretization
parameters. Furthermore, inequalities between vectors are understood in the com-
ponentwise sense.
For a general introduction to parameter-uniform numerical methods for singular
perturbation problems, see [8], [6] and [1]. Parameter-uniform numerical methods
for various special cases of (1) are examined in, for example, [4] and [5]. For the
problem (1) itself parameter-uniform numerical methods of first and second order
are considered in [3]. However, the present paper differs from [3] in two important
ways. First of all, the meshes, and hence the numerical methods, used are different
from those in [3]; the transition points between meshes of differing resolution are
defined in a similar but different manner. The piecewise-uniform Shishkin meshes
M~b in the present paper have the elegant property that they reduce to uniform
meshes whenever ~b = ~0. Secondly, the proofs given here do not require the use of
Green’s function techniques, as is the case in [3]. The significance of this is that it
is more likely that such techniques can be extended in future to problems in higher
dimensions and to nonlinear problems, than is the case for proofs depending on
Green’s functions. It is also satisfying to demonstrate that the methods of proof
pioneered by G. I. Shishkin can be extended successfully to systems of this kind.
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The plan of the paper is as follows. In the next section both standard and
novel bounds on the smooth and singular components of the exact solution are
obtained. The sharp estimates for the singular component in Lemma 7 are proved by
mathematical induction, while interesting orderings of the points x

(s)
i,j are established

in Lemma 5. In Section 4 piecewise-uniform Shishkin meshes are introduced, the
discrete problem is defined and the discrete maximum principle and discrete stability
properties are established. In Section 6 expressions for the local truncation errors
and some standard estimates are stated. In Section 7 parameter-uniform estimates
for the local truncation error of the smooth and singular components are obtained
in a sequence of lemmas and theorems. The section culminates with the statement
and proof of the essentially second order parameter-uniform error estimate.

2. Standard analytical results

The operator ~L satisfies the following maximum principle

Lemma 1. Let A(x) satisfy (2) and (3). Let ~ψ be any function in the domain of
~L such that ~ψ(0) ≥ ~0 and ~ψ(1) ≥ ~0. Then ~L~ψ(x) ≥ ~0 for all x ∈ (0, 1)
implies that ~ψ(x) ≥ ~0 for all x ∈ [0, 1].

Proof. Let i∗, x∗ be such that ψi∗(x∗) = mini,x ψi(x) and assume that the lemma is
false. Then ψi∗(x∗) < 0. From the hypotheses we have x∗ 6∈ {0, 1} and ψ′′i∗(x

∗) ≥ 0.
Thus

(~L~ψ(x∗))i∗ = −εi∗ψ
′′
i∗(x

∗) +
n∑

j=1

ai∗,j(x∗)ψj(x∗) < 0,

which contradicts the assumption and proves the result for ~L.

Let Ã(x) be any principal sub-matrix of A(x) and ~̃L the corresponding operator.

To see that any ~̃L satisfies the same maximum principle as ~L, it suffices to observe
that the elements of Ã(x) satisfy a fortiori the same inequalities as those of A(x).

Lemma 2. Let A(x) satisfy (2) and (3). If ~ψ is any function in the domain of ~L,
then for each i, 1 ≤ i ≤ n,

|ψi(x)| ≤ max
{
‖ ~ψ(0) ‖, ‖ ~ψ(1) ‖, 1

α
‖ ~L~ψ ‖

}
, x ∈ [0, 1].

Proof. Define the two functions

~θ±(x) = max
{
‖ ~ψ(0) ‖, ‖ ~ψ(1) ‖, 1

α
‖ ~L~ψ ‖

}
~e ± ~ψ(x)

where ~e = (1, . . . , 1)T is the unit column vector. Using the properties of A it
is not hard to verify that ~θ±(0) ≥ ~0, ~θ±(1) ≥ ~0 and ~L~θ±(x) ≥ ~0. It follows
from Lemma 1 that ~θ±(x) ≥ ~0 for all x ∈ [0, 1].
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Standard estimates of the exact solution and its derivatives are contained in the
following lemma.

Lemma 3. Let A(x) satisfy (2) and (3) and let ~u be the exact solution of (1). Then,
for each i = 1 . . . n, x ∈ [0, 1] and k = 0, 1, 2,

|u(k)
i (x)| ≤ Cε

− k
2

i (||~u(0)||+ ||~u(1)||+ ||~f ||)

|u(3)
i (x)| ≤ Cε

− 1
2

1 ε−1
i (||~u(0)||+ ||~u(1)||+ ||~f ||+√

ε1||~f ′||)

and
|u(4)

i (x)| ≤ Cε−1
1 ε−1

i (||~u(0)||+ ||~u(1)||+ ||~f ||+ ε1||~f ′′||).
Proof. The bound on ~u is an immediate consequence of Lemma 2 and the differential
equation.
To bound u′i(x), for all i and any x, consider an interval Nx = [a, a +

√
εi] such that

x ∈ Nx. Then, by the mean value theorem, for some y ∈ Nx,

u′i(y) =
ui(a +

√
εi)− ui(a)√
εi

and it follows that
|u′i(y)| ≤ 2ε

− 1
2

i ||ui||.
Now

~u′(x) = ~u′(y) +
∫ x

y

~u′′(s)ds = ~u′(y) + E−1

∫ x

y

(−~f(s) + A(s)~u(s))ds

and so

|u′i(x)| ≤ |u′i(y)|+ Cε−1
i (||fi||+ ||~u||)

∫ x

y

ds ≤ Cε
− 1

2
i (||fi||+ ||~u||)

from which the required bound follows.
Rewriting and differentiating the differential equation gives ~u′′ = E−1(A~u − ~f),
~u(3) = E−1(A~u′ + A′~u− ~f ′), ~u(4) = E−1(A~u′′ + 2A′~u′ + A′′~u− ~f ′′) and the bounds
on u′′i , u

(3)
i , u

(4)
i follow.

The reduced solution ~u0 of (1) is the solution of the reduced equation A~u0 = ~f .
The Shishkin decomposition of the exact solution ~u of (1) is ~u = ~v + ~w where
the smooth component ~v is the solution of ~L~v = ~f with ~v(0) = ~u0(0) and
~v(1) = ~u0(1) and the singular component ~w is the solution of ~L~w = ~0 with
~w(0) = ~u(0) − ~v(0) and ~w(1) = ~u(1) − ~v(1). For convenience the left and right
boundary layers of ~w are separated using the further decomposition ~w = ~wl + ~wr

where ~L~wl = ~0, ~wl(0) = ~u(0) − ~v(0), ~wl(1) = ~0 and ~L~wr = ~0, ~wr(0) = ~0, ~wr(1) =
~u(1)− ~v(1).
Bounds on the smooth component and its derivatives are contained in
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Lemma 4. Let A(x) satisfy (2) and (3). Then the smooth component ~v and its
derivatives satisfy, for all x ∈ [0, 1], i = 1, . . . , n and k = 0, . . . , 4,

|v(k)
i (x)| ≤ C(1 + ε

1− k
2

i ).

Proof. The bound on ~v is an immediate consequence of the defining equations for
~v and Lemma 2.
The bounds on ~v′ and ~v′′ are found as follows. Differentiating twice the equation for
~v, it is not hard to see that ~v′′ satisfies

~L~v′′ = ~g where ~g = ~f ′′ −A′′~v − 2A′~v′. (5)

Also the defining equations for ~v yield at x = 0, x = 1

~v′′(0) = ~0, ~v′′(1) = ~0. (6)

Applying Lemma 2 to ~v′′ then gives

||~v′′|| ≤ C(1 + ||~v′||). (7)

Choosing i∗, x∗ such that 1 ≤ i∗ ≤ n, x∗ ∈ (0, 1) and

v′i∗(x
∗) = ||~v′|| (8)

and using a Taylor expansion it follows that, for any y ∈ [0, 1 − x∗] and some η,
x∗ < η < x∗ + y,

vi∗(x∗ + y) = vi∗(x∗) + y v′i∗(x
∗) +

y2

2
v′′i∗(η). (9)

Rearranging (9) yields

v′i∗(x
∗) =

vi∗(x∗ + y)− vi∗(x∗)
y

− y

2
v′′i∗(η) (10)

and so, from (8) and (10),

||~v′|| ≤ 2
y
||~v||+ y

2
||~v′′||. (11)

Using (11), (7) and the bound on ~v yields

(1− Cy

2
)||~v′′|| ≤ C(1 +

2
y
). (12)

Choosing y = min( 1
C , 1− x∗), (12) then gives ||~v′′|| ≤ C and (11) gives ||~v′|| ≤ C as

required. The bounds on ~v(3), ~v(4) are obtained by a similar argument.
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3. Improved estimates

The layer functions Bl
i, Br

i , Bi, i = 1, . . . , n, , associated with the solution ~u, are
defined on [0, 1] by

Bl
i(x) = e−x

√
α/εi , Br

i (x) = Bl
i(1− x), Bi(x) = Bl

i(x) + Br
i (x).

The following elementary properties of these layer functions, for all 1 ≤ i < j ≤ n
and 0 ≤ x < y ≤ 1, should be noted:
(a) Bl

i(x) < Bl
j(x), Bl

i(x) > Bl
i(y), 0 < Bl

i(x) ≤ 1.
(b) Br

i (x) < Br
j (x), Br

i (x) < Br
i (y), 0 < Br

i (x) ≤ 1.
(c) Bi(x) is monotone decreasing (increasing) for increasing x ∈ [0, 1

2 ]([ 12 , 1]).
(d) Bi(x) ≤ 2Bl

i(x) for x ∈ [0, 1
2 ].

Definition 1. For Bl
i, Bl

j, each i, j, 1 ≤ i 6= j ≤ n and each s, s > 0, the point

x
(s)
i,j is defined by

Bl
i(x

(s)
i,j )

εs
i

=
Bl

j(x
(s)
i,j )

εs
j

. (13)

It is remarked that

Br
i (1− x

(s)
i,j )

εs
i

=
Br

j (1− x
(s)
i,j )

εs
j

. (14)

In the next lemma the existence and uniqueness of the points x
(s)
i,j are shown. Various

properties are also established.

Lemma 5. For all i, j such that 1 ≤ i < j ≤ n and 0 < s ≤ 3/2, the points x
(s)
i,j

exist, are uniquely defined and satisfy the following inequalities

Bl
i(x)
εs
i

>
Bl

j(x)
εs

j

, x ∈ [0, x(s)
i,j ),

Bl
i(x)
εs
i

<
Bl

j(x)
εs
j

, x ∈ (x(s)
i,j , 1]. (15)

Moreover,

x
(s)
i,j < x

(s)
i+1,j , if i + 1 < j and x

(s)
i,j < x

(s)
i,j+1, if i < j. (16)

Also

x
(s)
i,j < 2s

√
εj√
α

and x
(s)
i,j ∈ (0,

1
2
) if i < j. (17)

Analogous results hold for the Br
i , Br

j and the points 1− x
(s)
i,j .

Proof. Existence, uniqueness and (15) follow from the observation that the ratio of
the two sides of (13), namely

Bl
i(x)
εs

i

εs
j

Bl
j(x)

=
εs
j

εs
i

exp (−√αx(
1√
εi

− 1√
εj

)),
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is monotonically decreasing from the value εs
j

εs
i

> 1 as x increases from 0.

The point x
(s)
i,j is the unique point x at which this ratio has the value 1. Rearranging

(13), and using the inequality ln x < x− 1 for all x > 1, gives

x
(s)
i,j = 2s




ln( 1√
εi

)− ln( 1√
εj

)
√

α( 1√
εi
− 1√

εj
)


 =

2s ln(
√

εj√
εi

)
√

α( 1√
εi
− 1√

εj
)

< 2s

√
εj√
α

, (18)

which is the first part of (17). The second part follows immediately from this and
(4).
To prove (16), writing

√
εk = exp(−pk), for some pk > 0 and all k, it follows that

x
(s)
i,j =

2s(pi − pj)√
α(exp pi − exp pj)

.

The inequality x
(s)
i,j < x

(s)
i+1,j is equivalent to

pi − pj

exp pi − exp pj
<

pi+1 − pj

exp pi+1 − exp pj
,

which can be written in the form

(pi+1 − pj) exp(pi − pj) + (pi − pi+1)− (pi − pj) exp(pi+1 − pj) > 0.

With a = pi − pj and b = pi+1 − pj it is not hard to see that a > b > 0 and
a− b = pi − pi+1. Moreover, the previous inequality is then equivalent to

exp a− 1
a

>
exp b− 1

b
,

which is true because a > b and proves the first part of (16). The second part is
proved by a similar argument.
The analogous results for the Br

i , Br
j and the points 1−x

(s)
i,j are proved by a similar

argument.

In the following lemma sharper estimates of the smooth component are presented.

Lemma 6. Let A(x) satisfy (2) and (3). Then the smooth component ~v of the
solution ~u of (1) satisfies for i = 1, . . . , n, k = 0, 1, 2, 3 and x ∈ Ω

|v(k)
i (x)| ≤ C


1 +

n∑

q=i

Bq(x)

ε
k
2−1
q


 .

Proof. Define a barrier function

~ψ±(x) = C[1 + Bn(x)]~e ± ~v(k)(x), k = 0, 1, 2 and x ∈ Ω.
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Using Lemma 1, we find that ~L~ψ±(x) ≥ ~0 and ~ψ±(0) ≥ ~0, ~ψ±(1) ≥ ~0 for
proper choices of the constant C.
Thus using Lemma 4 we conclude that for k = 0, 1, 2,

|v(k)
i (x)| ≤ C[1 + Bn(x)], x ∈ Ω. (19)

Consider the system of equations (5), (6) satisfied by ~v′′ and note that ‖ ~g′ ‖ ≤ C
from Lemma 4.
For convenience let ~p denote ~v′′ then

~L~p = ~g, ~p(0) = ~0, ~p(1) = ~0. (20)

Let ~q and ~r be the smooth and singular components of ~p given by

~L~q = ~g, ~q(0) = A(0)−1~g(0), ~q(1) = A(1)−1~g(1)

and
~L~r = ~0, ~r(0) = −~q(0), ~r(1) = −~q(1).

Using Lemmas 4 and 7 we have, for i = 1, . . . , n and x ∈ Ω,

|q′i(x)| ≤ C,

|r′i(x)| ≤ C

[
Bi(x)√

εi

+ · · ·+ Bn(x)√
εn

]
.

Hence, for x ∈ Ω and i = 1, . . . , n,

|v′′′i (x)| = |p′i(x)| ≤ C

[
1 +

Bi(x)√
εi

+ · · ·+ Bn(x)√
εn

]
. (21)

From (19) and (21), we find that for k = 0, 1, 2, 3 and x ∈ Ω,

|v(k)
i (x)| ≤ C

[
1 + ε

1− k
2

i Bi(x) + · · ·+ ε
1− k

2
n Bn(x)

]
.

Remark 1. It is interesting to note that the above estimate reduces to the estimate
of the smooth component of the solution of the scalar problem given in [6] when
n = 1.

Bounds on the singular components ~wl, ~wr of ~u and their derivatives are con-
tained in

Lemma 7. Let A(x) satisfy (2) and (3). Then there exists a constant C, such that
for each x ∈ [0, 1] and i = 1, . . . , n,

∣∣wl
i(x)

∣∣ ≤ CBl
n(x),

∣∣∣wl,′
i (x)

∣∣∣ ≤ C

n∑

q=i

Bl
q(x)√
εq

,

∣∣∣wl,′′
i (x)

∣∣∣ ≤ C

n∑

q=i

Bl
q(x)
εq

,
∣∣∣wl,(3)

i (x)
∣∣∣ ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

,

∣∣∣εiw
l,(4)
i (x)

∣∣∣ ≤ C

n∑
q=1

Bl
q(x)
εq

.

Analogous results hold for wr
i and their derivatives.
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Proof. First we obtain the bound on ~wl. We define the two functions ~θ± = CBl
n~e±

~wl. Then clearly ~θ±(0) ≥ ~0, ~θ±(1) ≥ ~0 and L~θ± = CL(Bl
n~e). Then, for i = 1, . . . , n,

(L~θ±)i = C(
∑n

j=1 ai,j − α εi

εn
)Bl

n > 0. By Lemma 1, ~θ± ≥ ~0, which leads to the
required bound on ~wl.

Assuming, for the moment, the bounds on the first and second derivatives wl,′
i

and wl,′′
i , the system of differential equations satisfied by ~wl is differentiated twice

to get
−E ~wl,(4) + A~wl,′′ + 2A′ ~wl,′ + A′′ ~wl = ~0.

The required bounds on the w
l,(4)
i follow from those on wl

i, wl,′
i and wl,′′

i . It remains
therefore to establish the bounds on wl,′

i ,wl,′′
i and wl,′′′

i , for which the following
mathematical induction argument is used. It is assumed that the bounds hold for
all systems up to order n − 1. It is then shown that the bounds hold for order n.
The induction argument is completed by observing that the bounds for the scalar
case n = 1 are proved in [6].

It is now shown that under the induction hypothesis the required bounds hold
for wl,′

i ,wl,′′
i and wl,′′′

i . The bounds when i = n are established first. The differential
equation for wl

n gives εnwl,′′
n = (A~wl)n and the required bound on wl,′′

n follows at
once from that for ~wl. For wl,′

n it is seen from the bounds in Lemma 3, applied to

the system satisfied by ~wl, that |wl,′
i (x)| ≤ Cε

− 1
2

i . In particular, |wl,′
n (0)| ≤ Cε

− 1
2

n

and |wl,′
n (1)| ≤ Cε

− 1
2

n . It is also not hard to verify that ~L~wl,′ = −A′ ~wl. Using these
results, the inequalities εi < εn, i < n, and the properties of A, it follows that the two
barrier functions ~θ± = CE− 1

2 Bl
n~e± ~wl,′ satisfy the inequalities ~θ±(0) ≥ ~0, ~θ±(1) ≥ ~0

and ~L~θ± ≥ ~0. It follows from Lemma 1 that ~θ± ≥ ~0 and in particular that its nth

component satisfies |wl,′
n (x)| ≤ Cε

− 1
2

n Bl
n(x) as required.

Now, consider

−εnwl,′′
n (x) + an1(x)wl

1(x) + an2(x)wl
2(x) + · · ·+ ann(x)wl

n(x) = fn(x). (22)

Differentiating (22) once, we get

−εnw
l,(3)
n (x) = f ′n(x)−

n∑

j=1

(
anj(x)wl

j(x)
)′

|wl,(3)
n (x)| ≤ C ε−1

n


1 +

n∑

j=1

|wl,′
j (x)|




≤ C ε−1
n

[
Bl

1(x)√
ε1

+ · · ·+ Bl
n(x)√
εn

]

≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

.

To bound wl,′
i , wl,′′

i and w
l,(3)
i for 1 ≤ i ≤ n− 1 introduce ~̃wl = (wl

1, . . . , w
l
n−1).
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Then, taking the first n− 1 equations satisfied by ~wl, it follows that

−Ẽ ~̃wl,′′ + Ã ~̃wl = ~g,

where Ẽ, Ã is the matrix obtained by deleting the last row and column from E, A,
respectively, and the components of ~g are gi = −ai,nwl

n for 1 ≤ i ≤ n− 1. Using the
bounds already obtained for wl

n, wl,′
n , wl,′′

n and wl,′′′
n , it is seen that ~g is bounded

by CBl
n(x), ~g′ by C

Bl
n(x)√
εn

, ~g′′ by C
Bl

n(x)
εn

and ~g′′′ by C

n∑
q=1

Bl
q(x)

ε
3/2
q

. The boundary

conditions for ~̃wl are ~̃wl(0) = ~̃u(0) − ~̃u0(0), ~̃wl(1) = ~̃0, where ~u0 is the solution of
the reduced problem ~u0 = A−1 ~f , and are bounded by C(‖ ~u(0) ‖ + ‖ ~f(0) ‖) and
C(‖ ~u(1) ‖ + ‖ ~f(1) ‖). Now decompose ~̃wl into smooth and singular components
to get

~̃wl = ~q + ~r, ~̃wl,′ = ~q ′ + ~r ′.

Applying Lemma 4 to ~q and using the bounds on the inhomogeneous term ~g and its
derivatives ~g′, ~g′′ and ~g(3) it follows that

|~q ′(x)| ≤ C
Bl

n(x)√
εn

, |~q ′′(x)| ≤ C
Bl

n(x)
εn

and

|~q ′′′(x)| ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

.

Using mathematical induction, assume that the result holds for all systems with
n− 1 equations. Then Lemma 7 applies to ~r and so, for i = 1, . . . , n− 1,

|r′i(x)| ≤ C

n−1∑

q=i

Bl
q(x)√
εq

, |r′′i (x)| ≤ C

n−1∑

q=i

Bl
q(x)
εq

, |r′′′i (x)| ≤ C

n−1∑
q=1

Bl
q(x)

ε
3/2
q

.

Combining the bounds for the derivatives of qi and ri, it follows that

|wl,′
i (x)| ≤ C

n∑

q=i

Bl
q(x)√
εq

, |wl,′′
i (x)| ≤ C

n∑

q=i

Bl
q(x)
εq

, |wl,′′′
i (x)| ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

.

Thus, the bounds on wl,′
i , wl,′′

i and wl,′′′
i hold for a system with n equations, as

required. A similar proof of the analogous results for the right boundary layer
functions holds.

4. The Shishkin mesh

A piecewise uniform mesh with N mesh-intervals and mesh-points {xi}N
i=0 is now

constructed by dividing the interval [0, 1] into 2n + 1 sub-intervals as follows

[0, τ1] ∪ · · · ∪ (τn−1, τn] ∪ (τn, 1− τn] ∪ (1− τn, 1− τn−1] ∪ · · · ∪ (1− τ1, 1].



Numerical solution of a reaction–diffusion system 597

The n parameters τk, which determine the points separating the uniform meshes,
are defined by

τn = min
{

1
4
, 2
√

εn√
α

ln N

}
(23)

and for k = 1, . . . , n− 1

τk = min
{

τk+1

2
, 2
√

εk√
α

ln N

}
. (24)

Clearly

0 < τ1 < . . . < τn ≤ 1
4
,

3
4
≤ 1− τn < . . . < 1− τ1 < 1.

Then, on the sub-interval (τn, 1 − τn] a uniform mesh with N
2 mesh-intervals is

placed, on each of the sub-intervals (τk, τk+1] and (1−τk+1, 1−τk], k = 1, . . . , n−1,
a uniform mesh of N

2n−k+2 mesh-intervals is placed and on both of the sub-intervals
[0, τ1] and (1− τ1, 1] a uniform mesh of N

2n+1 mesh-intervals is placed. In practice
it is convenient to take

N = 2n+p+1 (25)

for some natural number p. It follows that in the sub-interval [τk−1, τk] there are
N/2n−k+3 = 2k+p−2 mesh-intervals. This construction leads to a class of 2n piece-
wise uniform Shishkin meshes M~b, where ~b denotes an n–vector with bi = 0 if
τi = τi+1

2 and bi = 1 otherwise. From the above construction it clear that the only
points at which the meshsize can change are in a subset J~b of the set of transition
points T~b = {τk}n

k=1 ∪ {1 − τk}n
k=1. It is not hard to see that the change in the

meshsize at each point τk is 2n−k+3(dk−dk−1), where dk = τk+1
2 − τk for 1 ≤ k ≤ n,

with the conventions d0 = 0, τn+1 = 1/2. Notice that dk ≥ 0 and that bk = 0 if and
only if dk = 0. It follows that M~b is a classical uniform mesh when ~b = ~0.
The following notation is now introduced: Hj = xj+1 − xj , hj = xj − xj−1, δj =
xj+1 − xj−1, J~b = {xj : Hj − hj 6= 0}. Clearly, J~b is the set of points at which the
meshsize changes and J~b ⊂ T~b. Note that, in general, J~b is a proper subset of T~b.
Moreover, if bk = 0 then Hk ≤ hk and if bk = bk−1 = 0 then Hk = hk. In the latter
case, it follows that the meshsize does not change at τk or 1− τk.
It is not hard to see also that

τk ≤ C
√

εk ln N, 1 ≤ k ≤ n, (26)
hk = 2n−k+3N−1(τk − τk−1), Hk = 2n−k+2N−1(τk+1 − τk), (27)
δj = Hj + hj ≤ C max{Hj , hj}, 1 ≤ j ≤ N − 1, (28)

τk = 2−(j−k+1)τj+1 when bk = · · · = bj = 0, 1 ≤ k < j ≤ n (29)

and
Bl

k(τk) = Br
k(1− τk) = N−2 when bk = 1. (30)

The geometrical results in the following lemma are used later.
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Lemma 8. Assume that bk = 1. Then the following inequalities hold

x
(s)
k−1,k ≤ τk − hk for 1 < k ≤ n, (31)

Bl
i(τk)√

εi

<
1√
εk

for 1 ≤ i, k ≤ n, (32)

Bl
q(τk − hk) ≤ CBl

q(τk) for 1 ≤ k ≤ q ≤ n. (33)

Proof. To verify (31) note that by Lemma 5

x
(s)
k−1,k < 2s

√
εk√
α

=
sτk

ln N
=

sτk

(n + p + 1) ln 2
≤ τk

2
.

Also,

hk =
2n−k+3(τk − τk−1)

N
= 22−k−p(τk − τk−1) ≤ τk − τk−1

2
<

τk

2
.

It follows that x
(s)
k−1,k + hk ≤ τk as required.

To verify (32) note that if i ≥ k the result is trivial. On the other hand, if i < k, by
(31) and Lemma 5,

Bl
i(τk)√

εi

≤ Bl
i(x

(1)
i,k )√
εi

<
Bl

k(x(1)
i,k )√

εk

≤ 1√
εk

.

Finally, to verify (33) note that

hk = (τk − τk−1)2n−k+3N−1 ≤ τk2n−k+3N−1 =
√

εk√
α

2n−k+4N−1 ln N

and

e2n−k+4N−1 ln N = (N
1
N )2

n−k+4 ≤ C,

so
√

α√
εq

hk ≤
√

εk√
εq

2n−k+4N−1 ln N ≤ 2n−k+4N−1 ln N ≤ C

since k ≤ q. It follows that

Bl
q(τk − hk) = Bl

q(τk)e
√

α√
εq

hk ≤ CBl
q(τk)

as required.

5. The discrete problem

In this section a classical finite difference operator with an appropriate Shishkin
mesh is used to construct a numerical method for (1), which is shown later to be
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essentially second order parameter-uniform convergent. In the scalar case, when
n = 1, this result is well known. In [2] a similar numerical analysis is done for
a first order system of n equations with coincident perturbation parameters. For
the general case considered here, the error analysis is based on an extension of the
techniques employed in [7]. It is assumed henceforth that the problem data satisfy
whatever smoothness conditions are required.
The discrete two-point boundary value problem is now defined on any mesh M~b by
the finite difference method

−Eδ2~U(x) + A(x)~U(x) = ~f(x), ~U(0) = ~u(0), ~U(1) = ~u(1). (34)

This is used to compute numerical approximations to the exact solution of (1). Note
that (34) can also be written in the operator form

~LN ~U = ~f, ~U(0) = ~u(0), ~U(1) = ~u(1)

where
~LN = −Eδ2 + A

and δ2, D+ and D− are the difference operators

δ2~U(xj) =
D+~U(xj)−D−~U(xj)

hj

,

D+~U(xj) =
~U(xj+1)− ~U(xj)

hj+1

and

D−~U(xj) =
~U(xj)− ~U(xj−1)

hj

with hj =
hj + hj+1

2
, hj = xj − xj−1.

The following discrete results are analogous to those for the continuous case.

Lemma 9. Let A(x) satisfy (2) and (3). Then, for any mesh function ~Ψ, the
inequalities ~Ψ(0) ≥ ~0, ~Ψ(1) ≥ ~0 and ~LN ~Ψ(xj) ≥ ~0 for 1 ≤ j ≤ N − 1 imply
that ~Ψ(xj) ≥ ~0 for 0 ≤ j ≤ N.

Proof. Let i∗, j∗ be such that Ψi∗(xj∗) = mini,j Ψi(xj) and assume that the lemma
is false. Then Ψi∗(xj∗) < 0. From the hypotheses we have j∗ 6= 0, N and Ψi∗(xj∗)−
Ψi∗(xj∗−1) ≤ 0, Ψi∗(xj∗+1)−Ψi∗(xj∗) ≥ 0, so δ2Ψi∗(xj∗) > 0. It follows that

(
~LN ~Ψ(xj∗)

)
i∗

= −εi∗δ
2Ψi∗(xj∗) +

n∑

k=1

ai∗, k(xj∗)Ψk(xj∗) < 0,

which is a contradiction, as required.

An immediate consequence of this is the following discrete stability result.
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Lemma 10. Let A(x) satisfy (2) and (3). Then, for any mesh function ~Ψ,

‖ ~Ψ(xj) ‖ ≤ max
{
||~Ψ(0)||, ||~Ψ(1)||, 1

α
||~LN ~Ψ||

}
, 0 ≤ j ≤ N.

Proof. Define the two functions

~Θ±(xj) = max{||~Ψ(0)||, ||~Ψ(1)||, 1
α
||~LN ~Ψ||}~e± ~Ψ(xj)

where ~e = (1, . . . , 1) is the unit vector. Using the properties of A it is not hard to
verify that ~Θ±(0) ≥ ~0, ~Θ±(1) ≥ ~0 and ~LN ~Θ±(xj) ≥ ~0. It follows from Lemma 9
that ~Θ±(xj) ≥ ~0 for all 0 ≤ j ≤ N .

The following comparison result will be used in the proof of the error estimate.

Lemma 11. Assume that the mesh functions ~Φ and ~Z satisfy, for j = 1, . . . , N−1,

||~Z(0)|| ≤ ~Φ(0), ||~Z(1)|| ≤ ~Φ(1), ||~LN ~Z(xj)|| ≤ ~LN ~Φ(xj).

Then, for j = 0, . . . , N ,
||~Z(xj)|| ≤ ~Φ(xj).

Proof. Define the two mesh functions ~Ψ± by

~Ψ± = ~Φ± ~Z.

Then ~Ψ± satisfies, for j = 1, . . . , N − 1,

~Ψ±(0) = ~Ψ±(1) = ~0, ~LN ~Ψ±(xj) ≥ ~0.

The result follows from an application of Lemma 9.

6. The local truncation error

From Lemma 10, it is seen that in order to bound the error ||~U − ~u|| it suffices to
bound ~LN (~U − ~u). But this expression satisfies

~LN (~U − ~u) = ~LN (~U)− ~LN (~u) = ~f − ~LN (~u) = ~L(~u)− ~LN (~u)

= (~L− ~LN )~u = −E(δ2 −D2)~u

which is the local truncation of the second derivative. Let ~V , ~W be the discrete
analogues of ~v, ~w, respectively. Then, similarly,

~LN (~V − ~v) = −E(δ2 −D2)~v, ~LN ( ~W − ~w) = −E(δ2 −D2)~w.

By the triangle inequality,

‖ ~LN (~U − ~u) ‖ ≤ ‖ ~LN (~V − ~v) ‖ + ‖ ~LN ( ~W − ~w) ‖ . (35)
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Thus, the smooth and singular components of the local truncation error can be
treated separately. In view of this it is noted that, for any smooth function ψ, the
following three distinct estimates of the local truncation error of its second derivative
hold:
for xj ∈ M~b

|(δ2 −D2)ψ(xj)| ≤ C max
s ∈ Ij

|ψ′′(s)| (36)

and
|(δ2 −D2)ψ(xj)| ≤ Cδj max

s∈Ij

|ψ(3)(s)|, (37)

for xj /∈ J~b

|(δ2 −D2)ψ(xj)| ≤ Cδ2
j max

s∈Ij

|ψ(4)(s)|, (38)

for τk ∈ J~b

|(δ2 −D2)ψ(τk)| ≤ C( |Hk − hk|.|ψ(3)(τk)|+ δ2
k max

s∈Ik

|ψ(4)(s)| ). (39)

Here Ij = [xj−1, xj+1].

7. Error estimate

The proof of the error estimate is broken into two parts. In the first a theorem
concerning the smooth part of the error is proved. Then the singular part of the
error is considered. A barrier function is now constructed, which is used in both
parts of the proof.

For each τk ∈ T~b, introduce the piecewise linear polynomial

θk(x) =





x

τk
, 0 ≤ x ≤ τk

1, τk < x < 1− τk
1− x

τk
, 1− τk ≤ x ≤ 1.

It is not hard to verify that, for each xj = τk ∈ T~b,

~LN (θk(xj)~e)i ≥




α +
2εi

τk(Hk + hk)
, if xj = τk ∈ J~b

αθk(xj), if xj /∈ J~b.

On the Shishkin mesh M~b define the barrier function ~Φ by

~Φ(xj) = C N−2(ln N)3[1 +
∑

k∈I~b

θk(xj)]~e, (40)

where C is any sufficiently large constant.
Then ~Φ satisfies

0 ≤ Φi(xj) ≤ C N−2(lnN)3, 1 ≤ i ≤ n. (41)
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Also, for xj /∈ J~b,

(~LN ~Φ(xj))i ≥ CN−2(lnN)3 (42)

and, for τk ∈ J~b,

(~LN ~Φ(τk))i ≥ C(1 +
εi√

εk(Hk + hk)
)(N−1 ln N)2,

from which it follows that, for τk ∈ J~b and Hk ≥ hk,

(~LN ~Φ(τk))i ≥ C(N−2 +
εi√

εk

√
εk+1

N−1 ln N) (43)

and, for τk ∈ J~b and Hk ≤ hk,

(~LN ~Φ(τk))i ≥ C(N−2 +
εi

εk
N−1 ln N). (44)

The following theorem gives the error estimate for the smooth component.

Theorem 1. Let A(x) satisfy (2) and (3). Let ~v denote the smooth component of
the exact solution from (1) and ~V the smooth component of the discrete solution
from (34). Then

||~V − ~v|| ≤ C N−2(ln N)3. (45)

Proof. An application of Lemma 11 is made, using the above barrier function. To
prove the theorem it suffices to show that the ratio

R(vi(xj)) =
|εi(δ2 −D2)vi(xj)|
|(~LN ~Φ(xj))i|

, xj ∈ M~b

satisfies

R(vi(xj)) ≤ C. (46)

For xj /∈ J~b the bound (46) follows immediately from Lemma 4, (38), (28) and (42).
Now assume that xj = τk ∈ J~b. The required estimates of the denominator of
R(vi(τk)) are (43) and (44). The numerator is bounded above using Lemma 6, (32)
and (37). The cases bk = 1 and bk = 0 are treated separately and the inequalities
(26), (27), (28), (30) and (33) are used systematically.
Suppose first that bk = 1, then there are four possible subcases:

i ≤ k, Hk ≥ hk, R(vi(τk)) ≤ Cεk+1.
Hk ≤ hk, R(vi(τk)) ≤ Cεk.

i > k, Hk ≥ hk, R(vi(τk)) ≤ Cεk+1

√
εk√
εi

.

Hk ≤ hk, R(vi(τk)) ≤ Cεk

√
εk√
εi

.

(47)
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Secondly, if bk = 0, then bk−1 = 1, because otherwise τk /∈ J~b and furthermore
Hk ≤ hk. There are two possible subcases:

i ≤ k − 1, Hk ≤ hk, R(vi(τk)) ≤ Cεk.
i > k − 1, Hk ≤ hk, R(vi(τk)) ≤ Cεi.

(48)

In all six subcases, because of the ordering of the εi, it is clear that condition (46)
is fulfilled. This concludes the proof.

Before the singular part of the error is estimated the following lemmas are estab-
lished.

Lemma 12. Let A(x) satisfy (2) and (3). Then, on each mesh M~b, for 1 ≤ i ≤ n
and 1 ≤ j ≤ N , the following estimates hold

|εi(δ2 −D2)wl
i(xj)| ≤ C

δ2
j

ε1
for xj /∈ J~b. (49)

An analogous result holds for the wr
i .

Proof. When xj /∈ J~b, from (38) and Lemma 7, it follows that

|εi(δ2 −D2)wl
i(xj)| ≤ Cδ2

j max
s ∈ Ij

|εiw
l,(4)
i (s)|

≤ Cδ2
j max

s ∈ Ij

n∑
q = 1

Bl
q(s)
εq

≤ Cδ2
j

ε1

as required.

In what follows fourth degree polynomials of the form

pi;θ(x) =
4∑

k=0

(x− xθ)k

k!
w

l,(k)
i (xθ)

are used, where θ denotes a pair of integers separated by a comma.

Lemma 13. Let A(x) satisfy (2) and (3) and assume that M~b is such that bk = 1
for some k, 1 ≤ k ≤ n− 1. Then, for each i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ N there exists
a decomposition

wl
i =

k+1∑
q=1

wi,q,

for which the following estimates hold for each q and r, 1 ≤ q ≤ k, 0 ≤ r ≤ 2,

|εiw
(r+2)
i,q (xj)| ≤ Cε

− r
2

q Bl
q(xj)

and

|εiw
(3)
i,k+1(xj)| ≤ C

n∑

q=k+1

Bl
q(xj)√

εq

, |εiw
(4)
i,k+1(xj)| ≤ C

n∑

q=k+1

Bl
q(xj)
εq

.
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Furthermore, for xj /∈ J~b,

|εi(δ2 −D2)wl
i(xj)| ≤ C(Bl

k(xj−1) +
δ2
j

εk+1
) (50)

and, for τk ∈ J~b,

|εi(δ2 −D2)wl
i(τk)| ≤ C( Bl

k(τk − hk) +
δk√
εk+1

). (51)

Analogous results hold for the wr
i and their derivatives.

Proof. Consider the decomposition

wl
i =

k+1∑
m=1

wi,m,

where the components are defined by

wi,k+1 =

{
pi;k,k+1, on [0, x

(1)
k,k+1)

wl
i, otherwise

and for each m, k ≥ m ≥ 2,

wi,m =





pi;m−1,m, on [0, x
(1)
m−1,m)

wl
i −

k+1∑
q=m+1

wi,q, otherwise

and

wi,1 = wl
i −

k+1∑
q=2

wi,q on [0, 1].

From the above definitions it follows that, for each m, 1 ≤ m ≤ k, wi,m = 0 on
[x(1)

m,m+1, 1].
To establish the bounds on the fourth derivatives it is seen that:

for x ∈ [x(1)
k,k+1, 1], Lemma 7 and x ≥ x

(1)
k,k+1 imply that

|εiw
(4)
i,k+1(x)| = |εiw

l,(4)
i (x)| ≤ C

n∑
q=1

Bl
q(x)
εq

≤ C

n∑

q=k+1

Bl
q(x)
εq

;

for x ∈ [0, x
(1)
k,k+1], Lemma 7 and x ≤ x

(1)
k,k+1 imply that

|εiw
(4)
i,k+1(x)| = |εiw

l,(4)
i (x(1)

k,k+1)| ≤ C

n∑
q=1

Bl
q(x

(1)
k,k+1)
εq

≤ C

n∑

q=k+1

Bl
q(x

(1)
k,k+1)
εq

≤ C

n∑

q=k+1

Bl
q(x)
εq

;
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and for each m = k, . . . , 2, it follows that

for x ∈ [x(1)
m,m+1, 1], w

(4)
i,m = 0;

for x ∈ [x(1)
m−1,m, x

(1)
m,m+1], Lemma 7 implies that

|εiw
(4)
i,m(x)| ≤ |εiw

l,(4)
i (x)|+

k+1∑
q=m+1

|εiw
(4)
i,q (x)| ≤ C

n∑
q=1

Bl
q(x)
εq

≤ C
Bl

m(x)
εm

;

for x ∈ [0, x
(1)
m−1,m], Lemma 7 and x ≤ x

(1)
m−1,m imply that

|εiw
(4)
i,m(x)| = |εiw

l,(4)
i (x(1)

m−1,m)| ≤ C

n∑
q=1

Bl
q(x

(1)
m−1,m)
εq

≤ C
Bl

m(x(1)
m−1,m)
εm

≤ C
Bl

m(x)
εm

;

for x ∈ [x(1)
1,2, 1], w

(4)
i,1 = 0;

for x ∈ [0, x
(1)
1,2], Lemma 7 implies that

|εiw
(4)
i,1 (x)| ≤ |εiw

l,(4)
i (x)|+

k+1∑
q=2

|εiw
(4)
i,q (x)| ≤ C

n∑
q=1

Bl
q(x)
εq

≤ C
Bl

1(x)
ε1

.

For the bounds on the second and third derivatives note that, for each m, 1 ≤ m ≤ k:
for x ∈ [x(1)

m,m+1, 1], w′′i,m = 0 = w
(3)
i,m;

for x ∈ [0, x
(1)
m,m+1],

∫ x
(1)
m,m+1

x

εiw
(4)
i,m(s)ds = εiw

(3)
i,m(x(1)

m,m+1)− εiw
(3)
i,m(x) = −εiw

(3)
i,m(x)

and so

|εiw
(3)
i,m(x)| ≤

∫ x
(1)
m,m+1

x

|εiw
(4)
i,m(s)|ds ≤ C

εm

∫ x
(1)
m,m+1

x

Bl
m(s)ds ≤ C

Bl
m(x)√
εm

.

In a similar way, it can be shown that

|εiw
′′
i,m(x)| ≤ CBl

m(x).

Using the above decomposition yields

|εi(δ2 −D2)wl
i(xj)| ≤

k∑
q=1

|εi(δ2 −D2)wi,q(xj)|+ |εi(δ2 −D2)wi,k+1(xj)|.

For xj /∈ J~b, applying (38) to the last term and (36) to all other terms on the
right-hand side, it follows that

|εi(δ2 −D2)wl
i(xj)| ≤ C(

k∑
q=1

max
s∈Ij

|εiw
′′
i,q(s)|+ δ2

j max
s∈Ij

|εiw
(4)
i,k+1(s)|).
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Then (50) is obtained by using the bounds on the derivatives obtained in the first
part of the lemma.
On the other hand, for xj = τk ∈ J~b, applying (37) to the last term and (36) to the
other terms, (51) is obtained by a similar argument. The proof for the wr

i and their
derivatives is similar.

In what follows third degree polynomials of the form

p∗i;θ(x) =
3∑

k=0

(x− yθ)k

k!
w

l,(k)
i (yθ)

are used, where θ denotes a pair of integers separated by a comma.

Lemma 14. Let A(x) satisfy (2) and (3) and assume that M~b is such that bk = 1
for some k, 1 ≤ k ≤ n− 1. Then, for each i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ N there exists
a decomposition

wl
i =

k+1∑
m=1

wi,m,

for which the following estimates hold for each m, 1 ≤ m ≤ k,

|w′′i,m(xj)| ≤ C
Bl

m(xj)
εm

, |w(3)
i,m(xj)| ≤ C

Bl
m(xj)

ε
3/2
m

and

|w(3)
i,k+1(xj)| ≤ C

n∑

q=k+1

Bl
q(xj)

ε
3/2
q

.

Furthermore,

|εi(δ2 −D2)wl
i(xj)| ≤ Cεi

(
k∑

q=1

Bl
q(xj−1)

εq
+

δj

ε
3/2
k+1

)
. (52)

Analogous results hold for the wr
i and their derivatives.

Proof. The proof is similar to that of Lemma 13 with the points x
(1)
i,j replaced by

the points x
(3/2)
i,j . Consider the decomposition

wl
i =

k+1∑
m=1

wi,m,

where the components are defined by

wi,k+1 =

{
p∗i;k,k+1, on [0, x

(3/2)
k,k+1)

wl
i, otherwise
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and for each m, k ≥ m ≥ 2,

wi,m =





p∗i;m−1,m, on [0, x
(3/2)
m−1,m)

wl
i −

k+1∑
q=m+1

wi,q, otherwise

and

wi,1 = wl
i −

k+1∑
q=2

wi,q on [0, 1].

From the above definitions it follows that, for each m, 1 ≤ m ≤ k, wi,m = 0 on
[x(3/2)

m,m+1, 1].
To establish the bounds on the third derivatives it is seen that:

for x ∈ [x(3/2)
k,k+1, 1], Lemma 7 and x ≥ x

(3/2)
k,k+1 imply that

|w(3)
i,k+1(x)| = |wl,(3)

i (x)| ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

≤ C

n∑

q=k+1

Bl
q(x)

ε
3/2
q

;

for x ∈ [0, x
(3/2)
k,k+1], Lemma 7 and x ≤ x

(3/2)
k,k+1 imply that

|w(3)
i,k+1(x)| = |wl,(3)

i (x(3/2)
k,k+1)| ≤ C

n∑
q=1

Bl
q(x

(3/2)
k,k+1)

ε
3/2
q

≤ C

n∑

q=k+1

Bl
q(x

(3/2)
k,k+1)

ε
3/2
q

≤ C

n∑

q=k+1

Bl
q(x)

ε
3/2
q

;

and for each m = k, . . . , 2, it follows that

for x ∈ [x(3/2)
m,m+1, 1], w

(3)
i,m = 0;

for x ∈ [x(3/2)
m−1,m, x

(3/2)
m,m+1], Lemma 7 implies that

|w(3)
i,m(x)| ≤ |wl,(3)

i (x)|+
k+1∑

q=m+1

|w(3)
i,q (x)| ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

≤ C
Bl

m(x)

ε
3/2
m

;

for x ∈ [0, x
(3/2)
m−1,m], Lemma 7 and x ≤ x

(3/2)
m−1,m imply that

|w(3)
i,m(x)| = |wl,(3)

i (x(3/2)
m−1,m)| ≤ C

n∑
q=1

Bl
q(x

(3/2)
m−1,m)

ε
3/2
q

≤ C
Bl

m(x(3/2)
m−1,m)

ε
3/2
m

≤ C
Bl

m(x)

ε
3/2
m

;

for x ∈ [x(3/2)
1,2 , 1], w

(3)
i,1 = 0;
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for x ∈ [0, x
(3/2)
1,2 ], Lemma 7 implies that

|w(3)
i,1 (x)| ≤ |wl,(3)

i (x)|+
k+1∑
q=2

|w(3)
i,q (x)| ≤ C

n∑
q=1

Bl
q(x)

ε
3/2
q

≤ C
Bl

1(x)

ε
3/2
1

.

For the bounds on the second derivatives note that, for each m, 1 ≤ m ≤ k:

for x ∈ [x(3/2)
m,m+1, 1], w′′i,m = 0;

for x ∈ [0, x
(3/2)
m,m+1],

∫ x
(3/2)
m,m+1

x

w
(3)
i,m(s)ds = w′′i,m(x(3/2)

m,m+1)− w′′i,m(x) = −w′′i,m(x)

and so

|w′′i,m(x)| ≤
∫ x

(3/2)
m,m+1

x

|w(3)
i,m(s)|ds ≤ C

ε
3/2
m

∫ x
(3/2)
m,m+1

x

Bl
m(s)ds ≤ C

Bl
m(x)
εm

.

Finally, since

|εi(δ2 −D2)wl
i(xj)| ≤

k∑
m=1

|εi(δ2 −D2)wi,m(xj)|+ |εi(δ2 −D2)wi,k+1(xj)|,

using (37) on the last term and (36) on all other terms on the right-hand side, it
follows that

|εi(δ2 −D2)wl
i(xj)| ≤ C(

k∑
m=1

max
s∈Ij

|εiw
′′
i,m(s)|+ δj max

s∈Ij

|εiw
(3)
i,k+1(s)|).

The desired result follows by applying the bounds on the derivatives obtained in the
first part of the lemma. The proof for the wr

i and their derivatives is similar.

Lemma 15. Let A(x) satisfy (2) and (3). Then, on each mesh M~b, the following
estimate holds for i = 1, . . . , n and each j = 1, . . . , N ,

|εi(δ2 −D2)wl
i(xj)| ≤ CBl

n(xj−1).

An analogous result holds for the wr
i .

Proof. From (36) and Lemma 7, for each i = 1, . . . , n and j = 1, . . . , N, it
follows that

|εi(δ2 −D2)wl
i(xj)| ≤ C max

s∈Ij

|εiw
l,′′
i (s)|

≤ C εi

n∑

q=i

Bl
q(xj−1)

εq
≤ CBl

n(xj−1).

The proof for the wr
i and their derivatives is similar.



Numerical solution of a reaction–diffusion system 609

The following theorem provides the error estimate for the singular component.

Theorem 2. Let A(x) satisfy (2) and (3). Let ~w denote the singular component of
the exact solution from (1) and ~W the singular component of the discrete solution
from (34). Then

|| ~W − ~w|| ≤ C N−2(ln N)3. (53)

Proof. Since ~w = ~wl + ~wr, it suffices to prove the result for ~wl and ~wr separately.
Here it is proved for ~wl by an application of Lemma 11. A similar proof holds for
~wr.
The proof is in two parts.
First assume that xj /∈ J~b. Each open subinterval (τk, τk+1) is treated separately.
First, consider xj ∈ (0, τ1). Then, on each mesh M~b, δj ≤ CN−1τ1 and the result
follows from (26) and Lemma 12.
Secondly, consider xj ∈ (τ1, τ2), then τ1 ≤ xj−1 and δj ≤ CN−1τ2. The 2n possible
meshes are divided into subclasses of two types. On the meshes M~b with b1 = 0 the
result follows from (26), (29) and Lemma 12. On the meshes M~b with b1 = 1 the
result follows from (26), (30) and Lemma 13.
Thirdly, in the general case xj ∈ (τm, τm+1) for 2 ≤ m ≤ n − 1, it follows that
τm ≤ xj−1 and δj ≤ CN−1τm+1. Then M~b is divided into subclasses of three types:
M0

~b
= {M~b : b1 = · · · = bm = 0}, Mr

~b
= {M~b : br = 1, br+1 = · · · = bm =

0 for some 1 ≤ r ≤ m − 1} and Mm
~b

= {M~b : bm = 1}. On M0
~b

the result follows
from (26), (29) and Lemma 12; on Mr

~b
from (26), (29), (30) and Lemma 13; on Mm

~b
from (26), (30) and Lemma 13.
Finally, for xj ∈ (τn, 1), τn ≤ xj−1 and δj ≤ CN−1. Then M~b is divided into
subclasses of three types: M0

~b
= {M~b : b1 = · · · = bn = 0}, Mr

~b
= {M~b : br =

1, br+1 = · · · = bn = 0 for some 1 ≤ r ≤ n − 1} and Mn
~b

= {M~b : bn = 1}. On M0
~b

the result follows from (26), (29) and Lemma 12; on Mr
~b

from (26), (29), (30) and
Lemma 13; on Mn

~b
from (30) and Lemma 15.

Now assume that xj = τk ∈ J~b. Analogously to the proof of Theorem 1, the ratio
R(wl

i(τk)) is introduced in order to facilitate the use of Lemma 11. To complete the
proof it suffices to show that the ratio

R(wl
i(xj)) =

|εi(δ2 −D2)wl
i(xj)|

|(~LN ~Φ(xj))i|
, xj ∈ M~b

satisfies

R(wl
i(τk)) ≤ C. (54)

The required estimates of the denominator of R(wl
i(τk)) are (43) and (44). The

numerator is bounded above using Lemmas 13 and 14. The cases bk = 1 and bk = 0
are treated separately and the inequalities (26), (27), (28), (30) and (33) are used
systematically.
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Suppose first that bk = 1, then there are four possible subcases:

Lemma 14, i ≤ k, Hk ≥ hk, R(wl
i(τk)) ≤

C( εi

εk
N−2 + εi

εk+1
N−1 ln N)

C(N−2 + εi√
εk

√
εk+1

N−1 ln N)
.

Hk ≤ hk, R(wl
i(τk)) ≤

C( εi

εk
N−2 + εi

√
εk

ε
3/2
k+1

N−1 ln N)

C(N−2 + εi

εk
N−1 ln N)

.

Lemma 13, i > k, Hk ≥ hk, R(wl
i(τk)) ≤ C(N−2 + N−1 ln N)

C(N−2 + εi√
εk

√
εk+1

N−1 ln N)
.

Hk ≤ hk, R(wl
i(τk)) ≤

C(N−2 +
√

εk√
εk+1

N−1 ln N)

C(N−2 + N−1 ln N)
.

(55)

Secondly, if bk = 0, then bk−1 = 1, because otherwise τk /∈ J~b, and furthermore
Hk ≤ hk. There are two possible subcases:

Lemma 14, i ≤ k − 1, Hk ≤ hk, R(wl
i(τk)) ≤

C( εi

εk−1
N−2 + εi

εk
N−1 ln N)

C(N−2 + εi

εk
N−1 ln N)

.

Lemma 13, i > k − 1, Hk ≤ hk, R(wl
i(τk)) ≤ C(N−2 + N−1 ln N)

C(N−2 + N−1 ln N)
.

(56)

In all six subcases, because of the ordering of the εi, it is clear that condition (54)
is fulfilled. This concludes the proof.

The following theorem gives the required essentially second order parameter-uniform
error estimate.

Theorem 3. Let A(x) satisfy (2) and (3). Let ~u denote the exact solution from (1)
and ~U the discrete solution from (34). Then

||~U − ~u|| ≤ C N−2(ln N)3. (57)

Proof. An application of the triangle inequality and the results of Theorems 1 and
2 lead immediately to the required result.

8. Numerical results

The above numerical method is applied to the following singularly perturbed bound-
ary value problem

Example 1.

−ε1u
′′
1(x) + 5u1(x)− u2(x)− u3(x) = x2

−ε2u
′′
2(x)− u1(x) + (5 + x)u2(x)− u3(x) = e−x

−ε3u
′′
3(x)− (1 + x)u1(x)− u2(x) + (5 + x)u3(x) = 1 + x



 (58)
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for x ∈ (0, 1) and ~u(0) = ~0, ~u(1) = ~0. For various values of ε1, ε2, ε3 and
α = 2.0 and N = 2r, r = 8, · · · , 13 the computed order of ~ε–uniform convergence
and the computed ~ε–uniform error constant are found using the general methodology
from [1]. The results are presented in Table 1.

η Number of mesh points N
512 1024 2048 4096 8192

0.100E+01 0.284E-05 0.711E-06 0.178E-06 0.421E-07 0.192E-06
0.100E-02 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-05 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-08 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-11 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-14 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
0.100E-17 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.145E-04

DN 0.519E-03 0.242E-03 0.109E-03 0.414E-04 0.146E-04
pN 0.110E+01 0.115E+01 0.140E+01 0.150E+01
CN

p 0.432E+00 0.432E+00 0.417E+00 0.339E+00 0.257E+00
Computed order of ~ε -uniform convergence = 0.110E + 01

Computed ~ε -uniform error constant = 0.432E + 00

Table 1. Values of DN
ε , DN , pN , p∗, and CN

p∗ for ε1 =
η

16
, ε2 =

η

4
, ε3 = η and various

values of N with α = 2.0
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