127,442 research outputs found

    Inflating and Deflating Hot Jupiters: Coupled Tidal and Thermal Evolution of Known Transiting Planets

    Full text link
    We examine the radius evolution of close-in giant planets with a planet evolution model that couples the orbital-tidal and thermal evolution. For 45 transiting systems, we compute a large grid of cooling/contraction paths forward in time, starting from a large phase space of initial semi-major axes and eccentricities. Given observational constraints at the current time for a given planet (semi-major axis, eccentricity, and system age) we find possible evolutionary paths that match these constraints, and compare the calculated radii to observations. We find that tidal evolution has two effects. First, planets start their evolution at larger semi-major axis, allowing them to contract more efficiently at earlier times. Second, tidal heating can significantly inflate the radius when the orbit is being circularized, but this effect on the radius is short-lived thereafter. Often circularization of the orbit is proceeded by a long period while the semi-major axis slowly decreases. Some systems with previously unexplained large radii that we can reproduce with our coupled model are HAT-P-7, HAT-P-9, WASP-10, and XO-4. This increases the number of planets for which we can match the radius from 24 (of 45) to as many as 35 for our standard case, but for some of these systems we are required to be viewing them at a special time around the era of current radius inflation. This is a concern for the viability of tidal inflation as a general mechanism to explain most inflated radii. Also, large initial eccentricities would have to be common. We also investigate the evolution of models that have a floor on the eccentricity, as may be due to a perturber. In this scenario we match the extremely large radius of WASP-12b. (Abridged)Comment: 18 pages, 14 figures, 2 tables, Accepted for publication in Ap

    A two-degree Kelvin refrigerator

    Get PDF
    Open-cycle cryogenic refrigerator maintains temperature as low as 2K for periods up to six months. Designed to cool an infrared detector, refrigerator can be used in cooling Josephson-junction devices, magnetic bubble domains, and superconducting devices

    Secondary reflectors for economical sun-tracking energy collection system: A concept

    Get PDF
    Mechanism is simpler and lower in cost because it moves heat-collector pipe to stay in focus with sun, instead of moving heavy reflectors

    Low-cost solar tracking system

    Get PDF
    Smaller heat-collector is moved to stay in focus with the sun, instead of moving reflector. Tracking can be controlled by storing data of predicted solar positions or by applying conventional sun-sensing devices to follow solar movement

    Underground mineral extraction

    Get PDF
    A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface

    Solar energy collection system

    Get PDF
    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency

    Solar pond

    Get PDF
    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation

    The design and development of a solar tracking unit

    Get PDF
    The solar tracking unit was developed to support the Laser Heterodyne Spectrometer (LHS) airborne instrument, but has application to a general class of airborne solar occultation research instruments. The unit consists of a mirror mounted on two gimbals, one of which is hollow. The mirror reflects a 7.6 cm (3.0 in.) diameter beam of sunlight through the hollow gimbal into the research instrument optical axis. A portion of the reflected sunlight is directed into a tracking telescope which uses a four quadrant silicon detector to produce the servo error signals. The colinearity of the tracker output beam and the research instrument optical axis is maintained to better than + or - 1 arc-minute. The unit is microcomputer controlled and is capable of stand alone operation, including automatic Sun acquisition or operation under the control of the research instrument

    Sampler of gas borne particles

    Get PDF
    An atmosphere sample is described which includes a very thin filter element with straight-through holes on the order of 1 micron. A sample of air with particles to be examined is driven by means of a pressurized low molecular weight gas, e.g., He to the filter element front side. A partial vacuum may be present at the back side of the filter element. The pressure differential across the filter element is just below the rupture point of the filter element. Particles smaller than filter holes are deposited on the filter element. When using a filter element of plastic material of a thickness on the order of 10 microns, a stainless steel back-up plate and a diffusion member are used to support the filter element when subjected to a pressure differential on the order of a few hundred atmospheres
    corecore