2,418 research outputs found
Regularization of point vortices for the Euler equation in dimension two
In this paper, we construct stationary classical solutions of the
incompressible Euler equation approximating singular stationary solutions of
this equation.
This procedure is carried out by constructing solutions to the following
elliptic problem [ -\ep^2 \Delta
u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad
& x\in\partial\Omega, ] where , is a bounded
domain, is a harmonic function.
We showed that if is simply-connected smooth domain, then for any
given non-degenerate critical point of Kirchhoff-Routh function
with the same strength , there is a
stationary classical solution approximating stationary points vortex
solution of incompressible Euler equations with vorticity .
Existence and asymptotic behavior of single point non-vanishing vortex
solutions were studied by D. Smets and J. Van Schaftingen (2010).Comment: 32page
A computational analysis of lower bounds for big bucket production planning problems
In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
Effective Two Higgs Doublets in Nonminimal Supersymmetric Models
The Higgs sectors of supersymmetric extensions of the Standard Model have two
doublets in the minimal version (MSSM), and two doublets plus a singlet in two
others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise
comparison of these three models is possible if we assume that the singlet has
a somewhat larger breaking scale compared to the electroweak scale. In that
case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models
(THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral
Higgs boson has an upper bound in each case. We find that in the NMSSM, this
bound exceeds not very much that of the MSSM, unless tan(beta) is near one.
However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure
Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)
The dissociative adsorption of hydrogen on Pd(100) has been studied by ab
initio quantum dynamics and ab initio molecular dynamics calculations. Treating
all hydrogen degrees of freedom as dynamical coordinates implies a high
dimensionality and requires statistical averages over thousands of
trajectories. An efficient and accurate treatment of such extensive statistics
is achieved in two steps: In a first step we evaluate the ab initio potential
energy surface (PES) and determine an analytical representation. Then, in an
independent second step dynamical calculations are performed on the analytical
representation of the PES. Thus the dissociation dynamics is investigated
without any crucial assumption except for the Born-Oppenheimer approximation
which is anyhow employed when density-functional theory calculations are
performed. The ab initio molecular dynamics is compared to detailed quantum
dynamical calculations on exactly the same ab initio PES. The occurence of
quantum oscillations in the sticking probability as a function of kinetic
energy is addressed. They turn out to be very sensitive to the symmetry of the
initial conditions. At low kinetic energies sticking is dominated by the
steering effect which is illustrated using classical trajectories. The steering
effects depends on the kinetic energy, but not on the mass of the molecules.
Zero-point effects lead to strong differences between quantum and classical
calculations of the sticking probability. The dependence of the sticking
probability on the angle of incidence is analysed; it is found to be in good
agreement with experimental data. The results show that the determination of
the potential energy surface combined with high-dimensional dynamical
calculations, in which all relevant degrees of freedon are taken into account,
leads to a detailed understanding of the dissociation dynamics of hydrogen at a
transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Accuracy of selection of Merino sheep by visual appraisal
Of 187 stud-masters, sheep classers, commercial woolgrowers and sheep and wool advisory officers in the Queensland Department of Agriculture and Stock, who classed a small flock of sheep by visual appraisal, 8 per cent. secured at least 7 5 per cent. of the available selection differential for fleece value. Men who demonstrated the repeatability of their skills for the selection of sheep by visual appraisal achieved greater selection differentials by using fleece measurement as an aid to selection
Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei
We discuss the experimental and theoretical status of charge-symmetry
violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He.
Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142,
180, 220, and 256 MeV provides evidence for the presence of CSV. We describe
pion scattering from the three-nucleon system in terms of single- and
double-scattering amplitudes. External and internal Coulomb interactions as
well as the Delta-mass splitting are taken into account as sources of CSV.
Reasonable agreement between our theoretical calculations and the experimental
data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is
found that the Delta-mass splitting and the internal Coulomb interaction are
the most important contributions for CSV in the three-nucleon system. The CSV
effects are rather sensitive to the choice of pion-nuclear scattering
mechanisms, but at the same time, our theoretical predictions are much less
sensitive to the choice of the nuclear wave function. It is found, however,
that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of
our model, which may indicate that there are additional mechanisms for CSV
which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure
The balance of power: accretion and feedback in stellar mass black holes
In this review we discuss the population of stellar-mass black holes in our
galaxy and beyond, which are the extreme endpoints of massive star evolution.
In particular we focus on how we can attempt to balance the available accretion
energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole
spin and advection. We review quantitatively the methods which are used to
estimate these quantities, regardless of the details of the astrophysics close
to the black hole. Once these methods have been outlined, we work through an
outburst of a black hole X-ray binary system, estimating the flow of mass and
energy through the different accretion rates and states. While we focus on
feedback from stellar mass black holes in X-ray binary systems, we also
consider the applicability of what we have learned to supermassive black holes
in active galactic nuclei. As an important control sample we also review the
coupling between accretion and feedback in neutron stars, and show that it is
very similar to that observed in black holes, which strongly constrains how
much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture
Notes in Physics. Springer 201
Particle interactions with single or multiple 3D solar reconnecting current sheets
The acceleration of charged particles (electrons and protons) in flaring
solar active regions is analyzed by numerical experiments. The acceleration is
modelled as a stochastic process taking place by the interaction of the
particles with local magnetic reconnection sites via multiple steps. Two types
of local reconnecting topologies are studied: the Harris-type and the X-point.
A formula for the maximum kinetic energy gain in a Harris-type current sheet,
found in a previous work of ours, fits well the numerical data for a single
step of the process. A generalization is then given approximating the kinetic
energy gain through an X-point. In the case of the multiple step process, in
both topologies the particles' kinetic energy distribution is found to acquire
a practically invariant form after a small number of steps. This tendency is
interpreted theoretically. Other characteristics of the acceleration process
are given, such as the mean acceleration time and the pitch angle distributions
of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres
- …
