3,436 research outputs found

    Nontransgenic models of breast cancer

    Get PDF
    Numerous models have been developed to address key elements in the biology of breast cancer development and progression. No model is ideal, but the most useful are those that reflect the natural history and histopathology of human disease, and allow for basic investigations into underlying cellular and molecular mechanisms. We describe two types of models: those that are directed toward early events in breast cancer development (hyperplastic alveolar nodules [HAN] murine model, MCF10AT human xenograft model); and those that seek to reflect the spectrum of metastatic disease (murine sister cell lines 67, 168, 4T07, 4T1). Collectively, these models provide cell lines that represent all of the sequential stages of progression in breast disease, which can be modified to test the effect of genetic changes

    The Tumor Microenvironment of Clear-Cell Ovarian Cancer

    Get PDF
    Some patients with advanced clear-cell ovarian cancer (CCOC) respond to immunotherapy; however, little is known about the tumor microenvironment (TME) of this relatively rare disease. Here, we describe a comprehensive quantitative and topographical analysis of biopsies from 45 patients, 9 with Federation Internationale des Gynaecologistes et Obstetristes (FIGO) stage I/II (early CCOC) and 36 with FIGO stage III/IV (advanced CCOC). We investigated 14 immune cell phenotype markers, PD-1 and ligands, and collagen structure and texture. We interrogated a microarray data set from a second cohort of 29 patients and compared the TMEs of ARID1A-wildtype (ARID1A(wt)) versus ARID1A-mutant (ARID1A(mut)) disease. We found significant variations in immune cell frequency and phenotype, checkpoint expression, and collagen matrix between the malignant cell area (MCA), leading edge (LE), and stroma. The MCA had the largest population of CD138(+) plasma cells, the LE had more CD20(+) B cells and T cells, whereas the stroma had more mast cells and αSMA(+) fibroblasts. PD-L2 was expressed predominantly on malignant cells and was the dominant PD-1 ligand. Compared with early CCOC, advanced-stage disease had significantly more fibroblasts and a more complex collagen matrix, with microarray analysis indicating “TGFβ remodeling of the extracellular matrix” as the most significantly enriched pathway. Data showed significant differences in immune cell populations, collagen matrix, and cytokine expression between ARID1A(wt) and ARID1A(mut) CCOC, which may reflect different paths of tumorigenesis and the relationship to endometriosis. Increased infiltration of CD8(+) T cells within the MCA and CD4(+) T cells at the LE and stroma significantly associated with decreased overall survival

    An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ

    Get PDF
    Introduction: Human models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied. To accomplish this goal, the intraductal human-in-mouse (HIM) transplantation model was developed. The resulting models, which mimicked some of the diversity of human noninvasive breast cancers in vivo, were used to show whether subtypes of human DCIS might contain distinct subpopulations of tumor-initiating cells.Methods The intraductal models were established by injection of human DCIS cell lines (MCF10DCIS.COM and SUM-225), as well as cells derived from a primary human DCIS (FSK-H7), directly into the primary mouse mammary ducts via cleaved nipple. Six to eight weeks after injections, whole-mount, hematoxylin and eosin, and immunofluorescence staining were performed to evaluate the type and extent of growth of the DCIS-like lesions. To identify tumor-initiating cells, putative human breast stem/progenitor subpopulations were sorted from MCF10DCIS.COM and SUM-225 with flow cytometry, and their in vivo growth fractions were compared with the Fisher's Exact test. Results: Human DCIS cells initially grew within the mammary ducts, followed by progression to invasion in some cases into the stroma. The lesions were histologically almost identical to those of clinical human DCIS. This method was successful for growing DCIS cell lines (MCF10DCIS.COM and SUM-225) as well as a primary human DCIS (FSK-H7). MCF10DCIS.COM represented a basal-like DCIS model, whereas SUM-225 and FSK-H7 cells were models for HER-2[super]+ DCIS. With this approach, we showed that various subtypes of human DCIS appeared to contain distinct subpopulations of tumor-initiating cells. Conclusions: The intraductal HIM transplantation model provides an invaluable tool that mimics human breast heterogeneity at the noninvasive stages and allows the study of the distinct molecular and cellular mechanisms of breast cancer progression

    Polarization of coalitions in an agent-based model of political discourse

    Get PDF
    Political discourse is the verbal interaction between political actors in a policy domain. This article explains the formation of polarized advocacy or discourse coalitions in this complex phenomenon by presenting a dynamic, stochastic, and discrete agent-based model based on graph theory and local optimization. In a series of thought experiments, actors compute their utility of contributing a specific statement to the discourse by following ideological criteria, preferential attachment, agenda-setting strategies, governmental coherence, or other mechanisms. The evolving macro-level discourse is represented as a dynamic network and evaluated against arguments from the literature on the policy process. A simple combination of four theoretical mechanisms is already able to produce artificial policy debates with theoretically plausible properties. Any sufficiently realistic configuration must entail innovative and path-dependent elements as well as a blend of exogenous preferences and endogenous opinion formation mechanisms

    Extracranial head and neck schwannomas: a study of the nerve of origin

    Get PDF
    Schwannoma is a type of benign nerve sheath tumour arising from the Schwann cell. Because of the close relationship between the tumour and the nerve of origin (NOO), the operation of extracranial head and neck schwannoma may lead to palsy of major nerve. For this reason, an accurate diagnosis of schwannoma with the identification of the NOO is crucial to the management. The aim of this review was to find out the distribution of the NOO and the usefulness of the investigations in the diagnosis of schwannoma. Medical records of the patients who underwent operation of the extracranial head and neck schwannoma in our division were reviewed. Between January 2000 and December 2009, 30 cases of extracranial head and neck schwannoma were operated. Sympathetic trunk (10, 33%) and vagus nerve (6, 20%) were the two most common NOOs. In five (17%) cases, the NOO was not found to be arising from any major nerve. For these 30 patients, 20 received fine needle aspiration cytology (FNAC) and 26 underwent imaging studies (computed tomography or magnetic resonance imaging) before operation. The specificity of FNAC and imaging studies in making the diagnosis of schwannoma was 20 and 38%, respectively. For the patients who had nerve palsies on presentation, their deficits remained after operation. The rate of nerve palsy after tumour excision with division of NOO and intracapsular enucleation was 100 and 67%, respectively. The diagnosis of schwannoma is suggested by clinical features and supported by investigations. Most of the time, the diagnosis can only be confirmed on the histological study of the surgical specimen. Sympathetic trunk and vagus nerve are the two common NOOs. MRI is the investigation of choice in the diagnosis of schwannoma and the identification of NOO

    Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment

    Get PDF
    BACKGROUND: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS: Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS: Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer

    Imagable 4T1 model for the study of late stage breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function <it>in vivo</it>. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported.</p> <p>Methods</p> <p>The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells <it>in vivo</it>. Biophotonic imaging was used to characterize growth and metastasis of the lines <it>in vivo </it>and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed.</p> <p>Results</p> <p>Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified.</p> <p>Conclusion</p> <p>The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously appreciated in orchestrating changes in the tumor environment conducive to tumor cell dissemination and metastasis. The new cell lines will greatly facilitate the study of late stage breast and preclinical assessment of cancer drugs and other therapeutics particularly those targeting immune system effects on tumor metastasis.</p

    Ceibinin, a new positional isomer of mangiferin from the inflorescence of Ceiba pentandra (Bombacaceae), elicits similar antioxidant effect but no anti-inflammatory potential compared to mangiferin

    Get PDF
    Ceiba pentandra (L.) Gaertn. (Bombacaceae) is popular for the quality of its wood. However, its leaf, stem bark and root bark have been popular in ethnomedicine and, apart from the inflorescence, have been subject of extensive phytochemical investigations. In this study, two compounds were isolated from the crude methanol extract of the inflorescence. Through data from UV, NMR, MS, electrochemical studies, differential scanning calorimetry, and thermogravimetric analysis, the structures were elucidated as 3-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (1) and 2-C-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (mangiferin, 2). They were assessed for antioxidant efficacy (DCFDA assay) and for anti-inflammatory efficacy using the lipopolysaccharide (LPS)-induced inflammation model in the RAW 264.7 macrophages (nitrite levels quantified, using Griess Assay, as surrogate for nitric oxide (NO)). Compound 1 (named ceibinin) was established as a novel positional isomer of mangiferin (2). While both 1 and 2 were antioxidant against basal and hydrogen peroxide (100 μM)-induced oxidative stress (6.25 μg/ml abrogated peroxide-induced oxidative stress), ceibinin (1) demonstrated no anti-inflammatory potential, unlike mangiferin (2) which, as previously reported, showed anti-inflammatory effect. Our work reports a positional isomer of mangiferin for the first time in C. pentandra and demonstrates how such isomerism could underlie differences in biological activities and thus the potential for development into therapeutics

    Numerical and experimental analysis of micro HAWTs designed for wind tunnel applications

    Get PDF
    In this paper the authors describe a design and optimization process of micro HAWTs using a numerical and experimental approach. An in-house 1D BEM model was used to obtain a first geometrical draft. It allowed to quickly optimize blade geometry to maximize energy production as well. As these models are quite sensitive to airfoil coefficients, above all at low Reynolds numbers, an accurate 3D CFD model was developed to support and validate the 1D BEM design, analyzing and fixing the discrepancies between model output. The 3D CFD model was developed and optimized using ANSYS Fluent solver and a RANS transition turbulence model. This allowed to correctly reproduce the transition and stall phenomena that characterize the aerodynamic behavior of micro wind turbines, solving the issues related to low Reynolds flows. The procedure was completed, thus building two micro HAWTs with different scales, testing them in the subsonic wind tunnel of the University of Catania. Wind tunnel features, experimental set-up and testing procedures are presented in the paper. Through the comparison of numerical CFD and experimental test results, a good compatibility was found. This allowed the authors to analyze and compare numerical calculation results and verify blockage effects on the prototypes as well
    corecore