135,660 research outputs found

    Conditions driving chemical freeze-out

    Full text link
    We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.Comment: 8 pages, 5 eps figure

    The Highly Oscillatory Behavior of Automorphic Distributions for SL(2)

    Full text link
    Automorphic distributions for SL(2) arise as boundary values of modular forms and, in a more subtle manner, from Maass forms. In the case of modular forms of weight one or of Maass forms, the automorphic distributions have continuous first antiderivatives. We recall earlier results of one of us on the Holder continuity of these continuous functions and relate them to results of other authors; this involves a generalization of classical theorems on Fourier series by S. Bernstein and Hardy-Littlewood. We then show that the antiderivatives are non-differentiable at all irrational points, as well as all, or in certain cases, some rational points. We include graphs of several of these functions, which clearly display a high degree of oscillation. Our investigations are motivated in part by properties of "Riemann's nondifferentiable function", also known as "Weierstrass' function".Comment: 27 pages, 6 Figures; version 2 corrects misprints and updates reference

    Noise predictions and economic effects of Boeing nacelle modifications

    Get PDF
    Noise level predictions and economics of Boeing nacelle modification

    The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    Full text link
    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density ϵ\epsilon done on the lattice at finite chemical potential μ\mu, we find that the hadron resonance gas model under the condition of constant ϵ\epsilon describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density ss. The ss-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South Africa, Sep. 15-20 200

    Experimental investigation of leading-edge thrust at supersonic speeds

    Get PDF
    Wings, designed for leading edge thrust at supersonic speeds, were investigated in the Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.80, 2.00, 2.16, and 2.36. Experimental data were obtained on a uncambered wing which had three interchangeable leading edges that varied from sharp to blunt. The leading edge thrust concept was evaluated. Results from the investigation showed that leading edge flow separation characteristics of all wings tested agree well with theoretical predictions. The experimental data showed that significant changes in wing leading edge bluntness did not affect the zero lift drag of the uncambered wings

    Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C

    Get PDF
    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers
    corecore