10 research outputs found

    The relationship between mantle potential temperature and oceanic lithosphere buoyancy

    Get PDF
    The Earth's mantle potential temperature (Tp) is thought to have cooled by ~250 °C since the Archean, causing a progressive change in both the structure and composition of oceanic lithosphere. These variables affect the negative buoyancy of subducting slabs, which is known to be an important force in driving plate motions. However, the relationship between Tp and slab buoyancy remains unclear. Here, we model the formation and subduction of oceanic lithosphere as a function of Tp, to investigate how Tp influences the buoyancy of subducting slabs, and by extension how buoyancy forces may have changed through time. First, we simulate isentropic melting of peridotite at mid-ocean ridges over a range of Tp (1300-1550 °C) to calculate oceanic lithosphere structure and composition. Second, we model the thermal evolution of oceanic plates undergoing subduction for a variety of scenarios (by varying lithospheric thickness, slab length and subduction velocity). Finally, we integrate the structural, compositional and thermal constraints to forward model subduction metamorphism of oceanic plates to determine down-going slab density structures. When compared with ambient mantle, these models allow us to calculate buoyancy forces acting on subducting slabs. Our results indicate that oceanic lithosphere derived from hotter mantle has a greater negative buoyancy, and therefore subduction potential, than lithosphere derived from cooler mantle for a wide range of subduction scenarios. With respect to the early Earth, this conclusion supports the viability of subduction, and models of subduction zone initiation that invoke the concept of oceanic lithosphere being primed to subduct. However, we also show that decreases to lithosphere thickness and slab length, and reduced crustal hydration, progressively reduce slab negative buoyancy. These results highlight the need for robust estimates of early Earth lithospheric properties when considering whether subduction was operative at this time. Nevertheless, our findings suggest that subduction processes on the early Earth may have been uniformitarian

    Comparable Ages for the Independent Origins of Electrogenesis in African and South American Weakly Electric Fishes

    Get PDF
    One of the most remarkable examples of convergent evolution among vertebrates is illustrated by the independent origins of an active electric sense in South American and African weakly electric fishes, the Gymnotiformes and Mormyroidea, respectively. These groups independently evolved similar complex systems for object localization and communication via the generation and reception of weak electric fields. While good estimates of divergence times are critical to understanding the temporal context for the evolution and diversification of these two groups, their respective ages have been difficult to estimate due to the absence of an informative fossil record, use of strict molecular clock models in previous studies, and/or incomplete taxonomic sampling. Here, we examine the timing of the origins of the Gymnotiformes and the Mormyroidea using complete mitogenome sequences and a parametric Bayesian method for divergence time reconstruction. Under two different fossil-based calibration methods, we estimated similar ages for the independent origins of the Mormyroidea and Gymnotiformes. Our absolute estimates for the origins of these groups either slightly postdate, or just predate, the final separation of Africa and South America by continental drift. The most recent common ancestor of the Mormyroidea and Gymnotiformes was found to be a non-electrogenic basal teleost living more than 85 millions years earlier. For both electric fish lineages, we also estimated similar intervals (16–19 or 22–26 million years, depending on calibration method) between the appearance of electroreception and the origin of myogenic electric organs, providing rough upper estimates for the time periods during which these complex electric organs evolved de novo from skeletal muscle precursors. The fact that the Gymnotiformes and Mormyroidea are of similar age enhances the comparative value of the weakly electric fish system for investigating pathways to evolutionary novelty, as well as the influences of key innovations in communication on the process of species radiation

    The relationship between mantle potential temperature and oceanic lithosphere buoyancy

    No full text
    The Earth's mantle potential temperature (TP)is thought to have cooled by ∼250 ∘C since the Archean, causing a progressive change in both the structure and composition of oceanic lithosphere. These variables affect the negative buoyancy of subducting slabs, which is known to be an important force in driving plate motions. However, the relationship between TP and slab buoyancy remains unclear. Here, we model the formation and subduction of oceanic lithosphere as a function of TP, to investigate how TP influences the buoyancy of subducting slabs, and by extension how buoyancy forces may have changed through time. First, we simulate isentropic melting of peridotite at mid-ocean ridges over a range of TP (1300–1550 ∘C)to calculate oceanic lithosphere structure and composition. Second, we model the thermal evolution of oceanic plates undergoing subduction for a variety of scenarios (by varying lithospheric thickness, slab length and subduction velocity). Finally, we integrate the structural, compositional and thermal constraints to forward model subduction metamorphism of oceanic plates to determine down-going slab density structures. When compared with ambient mantle, these models allow us to calculate buoyancy forces acting on subducting slabs. Our results indicate that oceanic lithosphere derived from hotter mantle has a greater negative buoyancy, and therefore subduction potential, than lithosphere derived from cooler mantle for a wide range of subduction scenarios. With respect to the early Earth, this conclusion supports the viability of subduction, and models of subduction zone initiation that invoke the concept of oceanic lithosphere being primed to subduct. However, we also show that decreases to lithosphere thickness and slab length, and reduced crustal hydration, progressively reduce slab negative buoyancy. These results highlight the need for robust estimates of early Earth lithospheric properties when considering whether subduction was operative at this time. Nevertheless, our findings suggest that subduction processes on the early Earth may have been uniformitarian

    The relationship between mantle potential temperature and oceanic lithosphere buoyancy

    No full text
    The Earth's mantle potential temperature (TP)is thought to have cooled by ∼250 ∘C since the Archean, causing a progressive change in both the structure and composition of oceanic lithosphere. These variables affect the negative buoyancy of subducting slabs, which is known to be an important force in driving plate motions. However, the relationship between TP and slab buoyancy remains unclear. Here, we model the formation and subduction of oceanic lithosphere as a function of TP, to investigate how TP influences the buoyancy of subducting slabs, and by extension how buoyancy forces may have changed through time. First, we simulate isentropic melting of peridotite at mid-ocean ridges over a range of TP (1300–1550 ∘C)to calculate oceanic lithosphere structure and composition. Second, we model the thermal evolution of oceanic plates undergoing subduction for a variety of scenarios (by varying lithospheric thickness, slab length and subduction velocity). Finally, we integrate the structural, compositional and thermal constraints to forward model subduction metamorphism of oceanic plates to determine down-going slab density structures. When compared with ambient mantle, these models allow us to calculate buoyancy forces acting on subducting slabs. Our results indicate that oceanic lithosphere derived from hotter mantle has a greater negative buoyancy, and therefore subduction potential, than lithosphere derived from cooler mantle for a wide range of subduction scenarios. With respect to the early Earth, this conclusion supports the viability of subduction, and models of subduction zone initiation that invoke the concept of oceanic lithosphere being primed to subduct. However, we also show that decreases to lithosphere thickness and slab length, and reduced crustal hydration, progressively reduce slab negative buoyancy. These results highlight the need for robust estimates of early Earth lithospheric properties when considering whether subduction was operative at this time. Nevertheless, our findings suggest that subduction processes on the early Earth may have been uniformitarian
    corecore