3,392 research outputs found
Feeder Cattle Basis in South Carolina 2000-2004
Livestock Production/Industries,
Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry
Shape differences are manifested in cortical structures due to
neuropsychiatric disorders. Such differences can be measured by labeled
cortical distance mapping (LCDM) which characterizes the morphometry of the
laminar cortical mantle of cortical structures. LCDM data consist of signed
distances of gray matter (GM) voxels with respect to GM/white matter (WM)
surface. Volumes and descriptive measures (such as means and variances) for
each subject and the pooled distances provide the morphometric differences
between diagnostic groups, but they do not reveal all the morphometric
information contained in LCDM distances. To extract more information from LCDM
data, censoring of the distances is introduced. For censoring of LCDM
distances, the range of LCDM distances is partitioned at a fixed increment
size; and at each censoring step, and distances not exceeding the censoring
distance are kept. Censored LCDM distances inherit the advantages of the pooled
distances. Furthermore, the analysis of censored distances provides information
about the location of morphometric differences which cannot be obtained from
the pooled distances. However, at each step, the censored distances aggregate,
which might confound the results. The influence of data aggregation is
investigated with an extensive Monte Carlo simulation analysis and it is
demonstrated that this influence is negligible. As an illustrative example, GM
of ventral medial prefrontal cortices (VMPFCs) of subjects with major
depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy
control (Ctrl) subjects are used. A significant reduction in laminar thickness
of the VMPFC and perhaps shrinkage in MDD and HR subjects is observed when
compared to Ctrl subjects. The methodology is also applicable to LCDM-based
morphometric measures of other cortical structures affected by disease.Comment: 25 pages, 10 figure
Recommended from our members
Gene expression differs in susceptible and resistant amphibians exposed to Batrachochytrium dendrobatidis.
Chytridiomycosis, the disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has devastated global amphibian biodiversity. Nevertheless, some hosts avoid disease after Bd exposure even as others experience near-complete extirpation. It remains unclear whether the amphibian adaptive immune system plays a role in Bd defence. Here, we describe gene expression in two host species-one susceptible to chytridiomycosis and one resistant-following exposure to two Bd isolates that differ in virulence. Susceptible wood frogs (Rana sylvatica) had high infection loads and mortality when exposed to the more virulent Bd isolate but lower infection loads and no fatal disease when exposed to the less virulent isolate. Resistant American bullfrogs (R. catesbeiana) had high survival across treatments and rapidly cleared Bd infection or avoided infection entirely. We found widespread upregulation of adaptive immune genes and downregulation of important metabolic and cellular maintenance components in wood frogs after Bd exposure, whereas American bullfrogs showed little gene expression change and no evidence of an adaptive immune response. Wood frog responses suggest that adaptive immune defences may be ineffective against virulent Bd isolates that can cause rapid physiological dysfunction. By contrast, American bullfrogs exhibited robust resistance to Bd that is likely attributable, at least in part, to their continued upkeep of metabolic and skin integrity pathways as well as greater antimicrobial peptide expression compared to wood frogs, regardless of exposure. Greater understanding of these defences will ultimately help conservationists manage chytridiomycosis
Recommended from our members
Functional Imaging of the Outer Retinal Complex using High Fidelity Imaging Retinal Densitometry
We describe a new technique, high fidelity Imaging Retinal Densitometry (IRD), which probes the functional integrity of the outer retinal complex. We demonstrate the ability of the technique to map visual pigment optical density and synthesis rates in eyes with and without macular disease. A multispectral retinal imaging device obtained precise measurements of retinal reflectance over space and time. Data obtained from healthy controls and 5 patients with intermediate AMD, before and after photopigment bleaching, were used to quantify visual pigment metrics. Heat maps were plotted to summarise the topography of rod and cone pigment kinetics and descriptive statistics conducted to highlight differences between those with and without AMD. Rod and cone visual pigment synthesis rates in those with AMD (v = 0.043 SD 0.019 min-1 and v = 0.119 SD 0.046 min-1, respectively) were approximately half those observed in healthy controls (v = 0.079 SD 0.024 min-1 for rods and v = 0.206 SD 0.069 min-1 for cones). By mapping visual pigment kinetics across the central retina, high fidelity IRD provides a unique insight into outer retinal complex function. This new technique will improve the phenotypic characterisation, diagnosis and treatment monitoring of various ocular pathologies, including AMD
A Demographic Approach to Race and Ethnicity in Metropolitan and Non-Metropolitan Regions of Arkansas, 1990 and 1999
This manuscript provides an empirical portrait of emergent trends in the growth, distribution, and racial and ethnic composition of Arkansas’ resident population. Particular attention is given to variation in the racial and ethnic composition of the estimated population among different regions of the state. During the 1990’s, racial and ethnic diversity increased statewide due in large part to Hispanic population growth in all regions. Black population growth was greatest in central Arkansas while Asian and Native American population growth increased most rapidly in the northwest metropolitan regions of the state. Overall, both metropolitan and non-metropolitan Arkansas communities have a more diverse mix of ethnic populations than has been known in the past
Diets of and trophic relationships among dominant marine nekton within the northern California Current ecosystem
In this study we analyzed the diets of 26 nekton species collected from two years (2000 and 2002) off Oregon and northern California to describe dominant nekton trophic
groups of the northern California Current (NCC) pelagic ecosystem. We also examined interannual variation in the
diets of three nekton species. Cluster analysis of predator diets resulted in nekton trophic groups based on the
consumption of copepods, euphausiids, brachyuran larvae, larval juvenile fishes, and adult nekton. However, many fish within trophic groups consumed prey from multiple
trophic levels—euphausiids being the most widely consumed. Comparison of diets between years showed that most
variation occurred with changes in the contribution of euphausiids and brachyuran larvae to nekton diets. The importance of euphausiids and other crustacean prey to nekton indicates that omnivory is an important characteristic of the NCC food web; however it may change during periods of lower or higher upwelling and ecosystem production
- …