117,837 research outputs found
Computer program documentation for the pasture/range condition assessment processor
The processor which drives for the RANGE software allows the user to analyze LANDSAT data containing pasture and rangeland. Analysis includes mapping, generating statistics, calculating vegetative indexes, and plotting vegetative indexes. Routines for using the processor are given. A flow diagram is included
Geologic application of thermal-inertia mapping from satellite
The author has identified the following significant results. Two night-time thermal images of the Powder River Basin, Wyoming distinctly show a major thermal feature. This feature is substantially coincident with a drainage divide and the southward facing slope appears cooler, suggesting a lower thermal inertia. An initial examination of regional geologic maps provides no clear evidence to suggest what type of geologic feature or structure may be present, although it can be noted that its northeastern end passes directly through Lead, South Dakota where the Homestake Gold Mine is located
Seasonal Variability In The Ionosphere Of Uranus
Infrared ground-based observations using IRTF, UKIRT, and Keck II of Uranus have been analyzed as to identify the long-term behavior of the H-3(+) ionosphere. Between 1992 and 2008 there are 11 individual observing runs, each recording emission from the H-3(+) Q branch emission around 4 mu m through the telluric L' atmospheric window. The column-averaged rotational H-3(+) temperature ranges between 715 K in 1992 and 534 K in 2008, with the linear fit to all the run-averaged temperatures decreasing by 8 K year(-1). The temperature follows the fractional illumination curve of the planet, declining from solstice (1985) to equinox (2007). Variations in H-3(+) column density do not appear to be correlated to either solar cycle phase or season. The radiative cooling by H-3(+) is similar to 10 times larger than the ultraviolet solar energy being injected to the atmosphere. Despite the fact that the solar flux alone is incapable of heating the atmosphere to the observed temperatures, the geometry with respect to the Sun remains an important driver in determining the thermospheric temperature. Therefore, the energy source that heats the thermosphere must be linked to solar mechanisms. We suggest that this may be in the form of conductivity created by solar ionization of atmospheric neutrals and/or seasonally dependent magnetospherically driven current systems.STFC PP/E/000983/1, ST/G0022223/1RCUKGemini ObservatoryNational Aeronautics and Space Administration (NASA) NXX08A043G, NNX08AE38AAstronom
Geologic applications of thermal-inertia mapping from satellite
In the Powder River Basin, Wyo., narrow geologic units having thermal inertias which contrast with their surroundings can be discriminated in optimal images. A few subtle thermal inertia anomalies coincide with areas of helium leakage believed to be associated with deep oil and gas concentrations. The most important results involved delineation of tectonic framework elements some of which were not previously recognized. Thermal and thermal inertia images also permit mapping of geomorphic textural domains. A thermal lineament appears to reveal a basement discontinuity which involves the Homestake Mine in the Black Hill, a zone of Tertiary igneous activity and facies control in oil producing horizons. Applications of these data to the Cabeza Prieta, Ariz., area illustrate their potential for igneous rock type discrimination. Extension to Yellowstone National Park resulted in the detection of additional structural information but surface hydrothermal features could not be distinguished with any confidence. A thermal inertia mapping algorithm, a fast and accurate image registration technique, and an efficient topographic slope and elevation correction method were developed
Geologic application of thermal-inertia mapping from satellite
The author has identified the following significant results. Approximately 400 miles of low altitude scanner data of good quality was acquired over the Powder River Basin between 13-16 Oct. 1978. Radiometric and meteorological data from three ground stations were also acquired in support of low altitude U.S.G.S. overflights
The Pearl Maiden\u27s Psyche: The Middle English \u3ci\u3ePearl\u3c/i\u3e and the Allegorical-Visionary Impulse in \u3ci\u3eTill We Have Faces\u3c/i\u3e
Lewisβs firm assertion that Till We Have Faces is not the least bit allegorical is challenged through its parallels in plot and theme with the highly allegorical Middle English Pearl. The deep allegorical structures in both revolve around seeing truly and falsely, and blindness both intentional and ignorant
Myth-Remaking in the Shadow of Vergil: The Captive(-ated) Voice of Ursula K. Le Guin\u27s \u3ci\u3eLavina\u3c/i\u3e
Reading of Ursula K. Le Guinβs not-exactly-historical novel Lavinia, which combines her thematic interest in the feminine voice and experience with postmodern and existential concerns about authorship, textuality, and the collaboration between author and reader (and author and character)βresulting, as always with Le Guin, in something rich, deep, and difficult to classify. Explores how Le Guin adapted the original sources to create a novel from the female characterβs point of view
Shapes of the Proton
A model proton wave function, constructed using Poincare invariance, and
constrained by recent electromagnetic form factor data, is used to study the
shape of the proton. Spin-dependent quark densities are defined as matrix
elements of density operators in proton states of definite spin-polarization,
and shown to have an infinite variety of non-spherical shapes. For high
momentum quarks with spin parallel to that of the proton, the shape resembles
that of a peanut, but for quarks with anti-parallel spin the shape is that of a
bagel.Comment: 8 pages, 5 figures, to be submitted to Phys. Rev. C This corrects a
few typos and explains some further connections with experiment
- β¦