2,682 research outputs found
Significance of electrokinetic characterization for interpreting interfacial phenomena at planar, macroscopic interfaces
Journal ArticleStreaming potential measurements provide valuable information for the validation and interpretation of interfacial phenomena that occur at flat macroscopic surfaces. Planar substrates have been extensively used for the interpretation of events, which occur at particulate surfaces; however, these flat surfaces are often only questionably representative of their particulate counterparts due to variations in surface chemistry and topography. In this study, the zeta potential from planar macroscopic surfaces of PMMA, mica, graphite, fluorite, and calcite have been calculated from streaming potentials measured in aqueous solutions using an asymmetric clamping cell. These zeta potentials have been found to significantly contribute to understanding and interpretation of interfacial phenomena influenced by Coulombic interactions including adsorption, surface forces, and the structure of surface micelles
Ecologically Sensitive Wetlands on Maui: Groundwater Protection Strategy for Hawaii
The EPA Ground-Water Protection Strategy has established differential protection levels based on the beneficial uses of groundwaters. Groundwater resources that are: (1) Irreplaceable sources of drinking water; and/or (2) Ecologically Vital are designated as of unusually high value. To determine those groundwaters that meet the EPA criteria for qualifying as âEcologically Vitalâ we have examined 24 groundwater based (wetland) ecological systems on the island of Maui. An inventory of the physical, biological and cultural characteristics of each area including âred flagâ features has been developed and coded. Using this âhabitat codeâ a rating system that reflects the sensitivity, i.e. âuniquenessâ of ânonrenewableâ attributes of each system was designed and 18 âecologically vitalâ habitats were identified that meet the EPA criteria for Class 1 level of groundwater protection. Insufficient information was available to determine the sensitivity of one of the sites.Department of Health, State of Hawai
Resonance- and Chaos-Assisted Tunneling
We consider dynamical tunneling between two symmetry-related regular islands
that are separated in phase space by a chaotic sea. Such tunneling processes
are dominantly governed by nonlinear resonances, which induce a coupling
mechanism between ``regular'' quantum states within and ``chaotic'' states
outside the islands. By means of a random matrix ansatz for the chaotic part of
the Hamiltonian, one can show that the corresponding coupling matrix element
directly determines the level splitting between the symmetric and the
antisymmetric eigenstates of the pair of islands. We show in detail how this
matrix element can be expressed in terms of elementary classical quantities
that are associated with the resonance. The validity of this theory is
demonstrated with the kicked Harper model.Comment: 25 pages, 5 figure
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Current Status of Simulations
As the title suggests, the purpose of this chapter is to review the current
status of numerical simulations of black hole accretion disks. This chapter
focuses exclusively on global simulations of the accretion process within a few
tens of gravitational radii of the black hole. Most of the simulations
discussed are performed using general relativistic magnetohydrodynamic (MHD)
schemes, although some mention is made of Newtonian radiation MHD simulations
and smoothed particle hydrodynamics. The goal is to convey some of the exciting
work that has been going on in the past few years and provide some speculation
on future directions.Comment: 15 pages, 14 figures, to appear in the proceedings of the ISSI-Bern
workshop on "The Physics of Accretion onto Black Holes" (8-12 October 2012
Charge-Symmetry Breaking and the Two-Pion-Exchange Two-Nucleon Interaction
Charge-symmetry breaking in the nucleon-nucleon force is investigated within
an effective field theory, using a classification of isospin-violating
interactions based on power-counting arguments. The relevant
charge-symmetry-breaking interactions corresponding to the first two orders in
the power counting are discussed, including their effects on the 3He-3H
binding-energy difference. The static charge-symmetry-breaking potential linear
in the nucleon-mass difference is constructed using chiral perturbation theory.
Explicit formulae in momentum and configuration spaces are presented. The
present work completes previously obtained results.Comment: 15 pages, 2 figure
Multimodal long noncoding RNA interaction networks: Control panels for cell fate specification
Lineage specification in early development is the basis for the exquisitely precise body plan of multicellular organisms. It is therefore critical to understand cell fate decisions in early development. Moreover, for regenerative medicine, the accurate specification of cell types to replace damaged/diseased tissue is strongly dependent on identifying determinants of cell identity. Long noncoding RNAs (lncRNAs) have been shown to regulate cellular plasticity, including pluripotency establishment and maintenance, differentiation and development, yet broad phenotypic analysis and the mechanistic basis of their function remains lacking. As components of molecular condensates, lncRNAs interact with almost all classes of cellular biomolecules, including proteins, DNA, mRNAs, and microRNAs. With functions ranging from controlling alternative splicing of mRNAs, to providing scaffolding upon which chromatin modifiers are assembled, it is clear that at least a subset of lncRNAs are far from the transcriptional noise they were once deemed. This review highlights the diversity of lncRNA interactions in the context of cell fate specification, and provides examples of each type of interaction in relevant developmental contexts. Also highlighted are experimental and computational approaches to study lncRNAs
Exact Solutions for Matter-Enhanced Neutrino Oscillations
The analogy between supersymmetric quantum mechanics and matter-enhanced
neutrino oscillations is exploited to obtain exact solutions for a class of
electron density profiles. This integrability condition is analogous to the
shape-invariance in supersymmetric quantum mechanics. This method seems to be
the most direct way to obtain the exact survival probabilities for a number of
density profiles of interest, such as linear and exponential density profiles.
The resulting neutrino amplitudes can also be utilized as comparison amplitudes
for the uniform semiclassical treatment of neutrino propagation in arbitrary
electron density profiles.Comment: Submitted to Physical Review D. Latex file, 8 pages. This paper is
also available at http://nucth.physics.wisc.edu/preprints
Multidisciplinary Design Optimization of an Extreme Aspect Ration HALE UAV
Development of High Altitude Long Endurance (HALE) aircraft systems is part of a vision for a low cost communications/surveillance capability. Applications of a multi payload aircraft operating for extended periods at stratospheric altitudes span military and civil genres and support battlefield operations, communications, atmospheric or agricultural monitoring, surveillance, and other disciplines that may currently require satellite-based infrastructure. The central goal of this research was the development of a multidisciplinary tool for analysis, design, and optimization of HALE UAVs, facilitating the study of a novel configuration concept. Applying design ideas stemming from a unique WWII-era project, a pinned wing HALE aircraft would employ self-supporting wing segments assembled into one overall flying wing. When wrapped in an optimization routine, the integrated design environment shows potential for a 17.3% reduction in weight when wing thickness to chord ratio, aspect ratio, wing loading, and power to weight ratio are included as optimizer-controlled design variables. Investigation of applying the sustained day/night mission requirement and improved technology factors to the design shows that there are potential benefits associated with a segmented or pinned wing. As expected, wing structural weight is reduced, but benefits diminish as higher numbers of wing segments are considered. For an aircraft consisting of six wing segments, a maximum of 14.2% reduction in gross weight over an advanced technology optimal baseline is predicted
Scaling laws for the 2d 8-state Potts model with Fixed Boundary Conditions
We study the effects of frozen boundaries in a Monte Carlo simulation near a
first order phase transition. Recent theoretical analysis of the dynamics of
first order phase transitions has enabled to state the scaling laws governing
the critical regime of the transition. We check these new scaling laws
performing a Monte Carlo simulation of the 2d, 8-state spin Potts model. In
particular, our results support a pseudo-critical beta finite-size scaling of
the form beta(infinity) + a/L + b/L^2, instead of beta(infinity) + c/L^d +
d/L^{2d}. Moreover, our value for the latent heat is 0.294(11), which does not
coincide with the latent heat analytically derived for the same model if
periodic boundary conditions are assumed, which is 0.486358...Comment: 10 pages, 3 postscript figure
- âŠ