1,447 research outputs found

    Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 7982–7990, doi:10.1002/2016GL070083.Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.NSF Grant Number: OCE-08410632017-02-1

    Along-margin variations in breakup volcanism at the Eastern North American Margin

    Get PDF
    Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(12),(2020): e2020JB020040, https://doi.org/10.1029/2020JB020040.We model the magnetic signature of rift‐related volcanism to understand the distribution and volume of magmatic activity that occurred during the breakup of Pangaea and early Atlantic opening at the Eastern North American Margin (ENAM). Along‐strike variations in the amplitude and character of the prominent East Coast Magnetic Anomaly (ECMA) suggest that the emplacement of the volcanic layers producing this anomaly similarly varied along the margin. We use three‐dimensional magnetic forward modeling constrained by seismic interpretations to identify along‐margin variations in volcanic thickness and width that can explain the observed amplitude and character of the ECMA. Our model results suggest that the ECMA is produced by a combination of both first‐order (~600–1,000 km) and second‐order (~50–100 km) magmatic segmentation. The first‐order magmatic segmentation could have resulted from preexisting variations in crustal thickness and rheology developed during the tectonic amalgamation of Pangaea. The second‐order magmatic segmentation developed during continental breakup and likely influenced the segmentation and transform fault spacing of the initial, and modern, Mid‐Atlantic Ridge. These variations in magmatism show how extension and thermal weakening was distributed at the ENAM during continental breakup and how this breakup magmatism was related to both previous and subsequent Wilson cycle stages.Thanks to Anne Bécel, Dan Lizarralde, Collin Brandl, Brandon Shuck, and Mark Everett for beneficial discussion and assistance in compiling the archived data used in this study. We thank Debbie Hutchinson (USGS Woods Hole Coastal and Marine Science Center) for passing along her vast breadth of knowledge on the ENAM through numerous constructive suggestions to greatly strengthen our manuscript. We greatly appreciate the insightful comments from two reviewers, the Associate Editor, and the Editor that significantly improved the manuscript. Thanks to Maurice Tivey for providing codes that aided our magnetic modeling efforts. Project completed as part of J.A.G.'s Ph.D. dissertation at Texas A&M University.2021-05-1

    Neural net detection of seismic features related to gas hydrates and free gas accumulations on the northern U.S. Atlantic margin

    Get PDF
    Bottom-simulating reflections (BSRs) that sometimes mark the base of the gas hydrate stability zone in marine sediments are often identified based on the reverse polarity reflections that cut across stratigraphic layering in seismic amplitude data. On the northern U.S. Atlantic margin (USAM) between Cape Hatteras and Hudson Canyon, legacy seismic data have revealed pronounced BSRs south of the deepwater extension of Hudson Canyon and more subtle ones from offshore Delaware south to Cape Hatteras, where the reflections sometimes follow stratigraphic layering. Using high-resolution seismic data acquired during the 2018 Mid-Atlantic Resource Imaging Experiment and a supervised neural net, we identify seismic features associated with gas hydrates and/or the top of gas between Hudson Canyon and Cape Hatteras. Using seismic attributes especially sensitive to the presence of gas, we train a neural network algorithm on seismic data from an area with strong BSRs and then apply the model to the rest of the data set. The results indicate that gas hydrate and/or shallow free gas are significantly more widespread on the northern part of the USAM than previously known. Seismic indicators of gas extend landward from the 2000 m isobath to the upper continental slope in sectors with (offshore Virginia) and, to a lesser extent, without (offshore New Jersey) pervasive upper slope methane seeps. Higher sand content and intermediate sediment thickness, factors related to the container size and gas charge in a petroleum systems framework, are associated with more robust gas indicators

    A unified model for tidal disruption events

    Full text link
    In the past few years wide-field optical and UV transient surveys as well as X-ray telescopes have allowed us to identify a few dozen candidate tidal disruption events (TDEs). While in theory the physical processes in TDEs are expected to be ubiquitous, a few distinct classes of TDEs have been observed. Some TDEs radiate mainly in NUV/optical while others produce prominent X-rays. Moreover, relativistic jets have been observed in only a handful of TDEs. This diversity might be related to the details of the super-Eddington accretion and emission physics relevant to TDE disks. In this Letter, we utilize novel three-dimensional general relativistic radiation magnetohydrodynamics simulations to study the super-Eddington compact disk phase expected in TDEs. Consistent with previous studies, geometrically thick disks, wide-angle optically-thick fast outflows and relativistic jets are produced. The outflow density and velocity depend sensitively on the inclination angle, and hence so does the reprocessing of emission produced from the inner disk. We then use Monte-Carlo radiative transfer to calculate the reprocessed spectra and find that that the observed ratio of optical to X-ray fluxes increases with increasing inclination angle. This naturally leads to a unified model for different classes of TDEs in which the spectral properties of the TDE depend mainly on the viewing-angle of the observer with respect to the orientation of the disk.Comment: Accepted to ApJ Letter

    Refining the formation and early evolution of the Eastern North American Margin : new insights from multiscale magnetic anomaly analyses

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 122 (2017): 8724–8748, doi:10.1002/2017JB014308.To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0–M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 (~168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.J. A. G. and M. T. thank the Department of Geology and Geophysics at Texas A&M University for their support of J. A. G.’s PhD program. M. T. and M. R. K. thank the Department of Earth and Environmental Sciences at Michigan State University for their support during M. R. K.’s MS thesis project, included in this study.2018-05-1

    Deformation of the Pacific/North America plate boundary at Queen Charlotte Fault : the possible role of rheology

    Get PDF
    Published 2018. This article is a U.S. Government work and is in the public domain in the USA. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 4223-4242, doi:10.1002/2017JB014770.The Pacific/North America (PA/NA) plate boundary between Vancouver Island and Alaska is similar to the PA/NA boundary in California in its kinematic history and the rate and azimuth of current relative motion, yet their deformation styles are distinct. The California plate boundary shows a broad zone of parallel strike slip and thrust faults and folds, whereas the 49‐mm/yr PA/NA relative plate motion in Canada and Alaska is centered on a single, narrow, continuous ~900‐km‐long fault, the Queen Charlotte Fault (QCF). Using gravity analysis, we propose that this plate boundary is centered on the continent/ocean boundary (COB), an unusual location for continental transform faults because plate boundaries typically localize within the continental lithosphere, which is weaker. Because the COB is a boundary between materials of contrasting elastic properties, once a fault is established there, it will probably remain stable. We propose that deformation progressively shifted to the COB in the wake of Yakutat terrane's northward motion along the margin. Minor convergence across the plate boundary is probably accommodated by fault reactivation on Pacific crust and by an eastward dipping QCF. Underthrusting of Pacific slab under Haida Gwaii occurs at convergence angles >14°–15° and may have been responsible for the emergence of the archipelago. The calculated slab entry dip (5°–8°) suggests that the slab probably does not extend into the asthenosphere. The PA/NA plate boundary at the QCF can serve as a structurally simple site to investigate the impact of rheology and composition on crustal deformation and the initiation of slab underthrusting

    Limited mantle hydration by bending faults at the Middle America Trench

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(1),(2021): e2020JB020982, https://doi.org/10.1029/2020JB020982.Seismic anisotropy measurements show that upper mantle hydration at the Middle America Trench (MAT) is limited to serpentinization and/or water in fault zones, rather than distributed uniformly. Subduction of hydrated oceanic lithosphere recycles water back into the deep mantle, drives arc volcanism, and affects seismicity at subduction zones. Constraining the extent of upper mantle hydration is an important part of understanding many fundamental processes on Earth. Substantially reduced seismic velocities in tomography suggest that outer rise plate‐bending faults provide a pathway for seawater to rehydrate the slab mantle just prior to subduction. Estimates of outer‐rise hydration based on tomograms vary significantly, with some large enough to imply that, globally, subduction has consumed more than two oceans worth of water during the Phanerozoic. We found that, while the mean upper mantle wavespeed is reduced at the MAT outer rise, the amplitude and orientation of inherited anisotropy are preserved at depths >1 km below the Moho. At shallower depths, relict anisotropy is replaced by slowing in the fault‐normal direction. These observations are incompatible with pervasive hydration but consistent with models of wave propagation through serpentinized fault zones that thin to 1 km below Moho. Confining hydration to fault zones reduces water storage estimates for the MAT upper mantle from ∼3.5 wt% to <0.9 wt% H20. Since the intermediate thermal structure in the ∼24 Myr‐old MAT slab favors serpentinization, limited hydration suggests that fault mechanics are the limiting factor, not temperatures. Subducting mantle may be similarly dry globally.National Science Foundation. Grant Numbers: OCE-0625178, OCE-08410632021-06-1

    Azimuthal seismic anisotropy of 70-ma Pacific-plate upper mantle.

    Get PDF
    Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Solid Earth 124(2), (2019):1889-1909, doi:10.1029/2018JB016451.Plate formation and evolution processes are predicted to generate upper mantle seismic anisotropy and negative vertical velocity gradients in oceanic lithosphere. However, predictions for upper mantle seismic velocity structure do not fully agree with the results of seismic experiments. The strength of anisotropy observed in the upper mantle varies widely. Further, many refraction studies observe a fast direction of anisotropy rotated several degrees with respect to the paleospreading direction, suggesting that upper mantle anisotropy records processes other than 2‐D corner flow and plate‐driven shear near mid‐ocean ridges. We measure 6.0 ± 0.3% anisotropy at the Moho in 70‐Ma lithosphere in the central Pacific with a fast direction parallel to paleospreading, consistent with mineral alignment by 2‐D mantle flow near a mid‐ocean ridge. We also find an increase in the strength of anisotropy with depth, with vertical velocity gradients estimated at 0.02 km/s/km in the fast direction and 0 km/s/km in the slow direction. The increase in anisotropy with depth can be explained by mechanisms for producing anisotropy other than intrinsic effects from mineral fabric, such as aligned cracks or other structures. This measurement of seismic anisotropy and gradients reflects the effects of both plate formation and evolution processes on seismic velocity structure in mature oceanic lithosphere, and can serve as a reference for future studies to investigate the processes involved in lithospheric formation and evolution.We thank the Captain and crew of the R/V Marcus G. Langseth and the engineers and technicians from the Scripps Institution of Oceanography and the Woods Hole Oceanographic Institution, who provided the instruments through the National Science Foundation's Ocean Bottom Seismograph Instrument Pool (OBSIP). The professionalism and expertise of these individuals were key to the success of this experiment. We also thank Donna Blackman, Tom Brocher, Philip Skemer, and an anonymous reviewer for their thoughtful comments which greatly improved this paper. The OBS data described here are archived at the IRIS Data Management Center (http://www.iris.edu) under network code ZA 2011–2013. The travel time picks are archived in the Marine‐Geo Digital Library (http://www.marine‐geo.org/library/) with the DOI 10.1594/IEDA/324643. This work was supported by NSF grant OCE‐0928663 to D. Lizarralde, J. Collins, and R. Evans; NSF grant OCE‐0927172 to G. Hirth; NSF grant OCE‐0928270 to J. Gaherty; and an NSF Graduate Research Fellowship to H. Mark.2019-07-2

    Automated identification of elemental ions in macromolecular crystal structures.

    Get PDF
    Many macromolecular model-building and refinement programs can automatically place solvent atoms in electron density at moderate-to-high resolution. This process frequently builds water molecules in place of elemental ions, the identification of which must be performed manually. The solvent-picking algorithms in phenix.refine have been extended to build common ions based on an analysis of the chemical environment as well as physical properties such as occupancy, B factor and anomalous scattering. The method is most effective for heavier elements such as calcium and zinc, for which a majority of sites can be placed with few false positives in a diverse test set of structures. At atomic resolution, it is observed that it can also be possible to identify tightly bound sodium and magnesium ions. A number of challenges that contribute to the difficulty of completely automating the process of structure completion are discussed
    corecore