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Neural net detection of seismic features related to gas hydrates and free
gas accumulations on the northern U.S. Atlantic margin

Urmi Majumdar1, Nathaniel C. Miller2, and Carolyn D. Ruppel2

Abstract

Bottom-simulating reflections (BSRs) that sometimes mark the base of the gas hydrate stability zone in
marine sediments are often identified based on the reverse polarity reflections that cut across stratigraphic
layering in seismic amplitude data. On the northern U.S. Atlantic margin (USAM) between Cape Hatteras and
Hudson Canyon, legacy seismic data have revealed pronounced BSRs south of the deepwater extension of Hud-
son Canyon and more subtle ones from offshore Delaware south to Cape Hatteras, where the reflections some-
times follow stratigraphic layering. Using high-resolution seismic data acquired during the 2018 Mid-Atlantic
Resource Imaging Experiment and a supervised neural net, we identify seismic features associated with gas
hydrates and/or the top of gas between Hudson Canyon and Cape Hatteras. Using seismic attributes especially
sensitive to the presence of gas, we train a neural network algorithm on seismic data from an area with strong
BSRs and then apply the model to the rest of the data set. The results indicate that gas hydrate and/or shallow
free gas are significantly more widespread on the northern part of the USAM than previously known. Seismic
indicators of gas extend landward from the 2000 m isobath to the upper continental slope in sectors with (off-
shore Virginia) and, to a lesser extent, without (offshore New Jersey) pervasive upper slope methane seeps.
Higher sand content and intermediate sediment thickness, factors related to the container size and gas charge in
a petroleum systems framework, are associated with more robust gas indicators.

Introduction
The distribution of gas hydrate along the U.S. Atlantic

margin (USAM) remains poorly constrained decades
after Markl et al. (1970) first identified bottom-simulating
reflections (BSRs) on the Blake Ridge offshore South
Carolina and Tucholke et al. (1977) imaged these features
within the Mid-Atlantic Bight (MAB) offshore New Jersey
and Delaware. On the Blake Ridge, which was one of the
first major marine provinces recognized as hosting wide-
spread gas hydrates, an Ocean Drilling Program expedi-
tion (ODP Leg 164) and a series of major seismic
programs refined BSR maps and the details of gas hy-
drate distributions and saturations (e.g., Holbrook et al.,
1996; Paull et al., 1996; Collett and Ladd, 2000; Hornbach
et al., 2008). In contrast, few studies have explicitly fo-
cused on gas hydrate distributions on the USAM north
of Cape Hatteras, even though a recent analysis of indi-
vidual seismic lines found BSRs in many locations (Rup-
pel et al., 2022) and more than 550 methane seeps have
been discovered on the upper slope in this sector (Skarke
et al., 2014). In fact, the quantitative hydrate assessment
conducted by the Bureau of Ocean and Energy Manage-
ment (BOEM) predicts more gas-in-place in hydrates on

the northern part of the USAM than in the area encom-
passing Blake Ridge (BOEM, 2012) and approximately
the same amount of gas-in-place in hydrates along the en-
tire USAM as in the northern Gulf of Mexico.

BSRs are negative polarity reflections (indicative of a
change from higher to lower seismic wavespeeds with
increasing depth in the sediments) that often are inter-
preted as marking the base of hydrate-bearing sedi-
ments (HBS) and/or the top of vapor phase gas in the
pore spaces of underlying sediments (e.g., Holbrook
et al., 1996). Vapor phase gas often is referred to as the
free gas, as it will be in the remainder of this paper. BSRs
sometimes cut across stratigraphic layering and may
have morphology resembling a muted form of seafloor
bathymetry owing to their coincidence with thermody-
namic (pressure-temperature) conditions at the hydrate
phase transition. HBS exist in many places with no
associated BSR (e.g., Paull et al., 1996), but the presence
of a BSR often implies that HBS exist somewhere within
the overlying sedimentary section (Majumdar et al.,
2016). Thus, the extent of BSRs can provide valuable
insights into the minimal geographic distribution of gas
hydrate.
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BSRs are traditionally identified based on the visual
interpretation of amplitude sections in air-gun seismic
data, which have the appropriate frequency content to
highlight BSRs. In locations such as the MAB, BSRs
can be discontinuous or parallel to stratigraphic layering
(Majumdar et al., 2019; Ruppel et al., 2019), characteris-
tics that render visual identification difficult and reduce
confidence that the appropriate reflections have been
chosen. BSRs are used as an indicator not only for
the existence of gas hydrate or underlying free gas accu-
mulations but also as a proxy for thermal conditions in
the shallow sedimentary section. The utility of BSRs be-
yond gas hydrate studies lends additional importance to
the appropriate identification of these features.

To overcome the challenges associated with visually
identifying BSRs in the MAB portion of the northern
USAM, we applied a supervised neural network (NN)
model to a modern high-resolution multichannel seismic
(MCS) data set acquired by the U.S. Geological Survey

(USGS) in 2018. In this paper, we describe the analytical
approach, the results obtained for the MAB, the physical
meaning of the seismic features assigned high confi-
dence by the NN model, and the implications for gas
hydrate distributions and the petroleum system on the
USAM.

Study area
The focus area for this study is the MAB, stretching

from offshore Long Island, New York, on the north to
roughly Cape Hatteras, North Carolina, on the south (Fig-
ure 1). This part of the USAM rifted from northwestern
Africa starting in late Triassic time, and its evolution, mor-
phology, subsidence, and sedimentation patterns have
been influenced by relict structures from Paleozoic orog-
enies, interaction with the Central Atlantic large igneous
province, the development and filling of onshore (e.g.,
Newark and Culpeper) and offshore (e.g., Baltimore Can-
yon Trough) rift basins, and other large-scale processes

(e.g., Manspeizer, 1988; Marzoli et al.,
1999; Thomas, 2006). The continental
shelf of the contemporary MAB extends
from the shoreline to waters at a depth
of approximately 100–125 m and widens
from approximately 40 km at Cape Hatte-
ras to more than 130 km offshore New
Jersey. A steep continental slope reaches
2000 m below sea level (mbsl) within
25–35 km seaward of the shelf break,
which is breached by six major canyons
(Hudson, Wilmington, Baltimore, Wash-
ington, Norfolk, and Keller) from the
north to south. Farther seaward, the
outer continental rise has a gently sloping
morphology and is mantled by thick Pale-
ogene and Neogene sediments and sedi-
ment drift deposits (e.g., Twichell et al.,
2009).

During Pleistocene time, most sedi-
ment was delivered to the continental
shelf and upper slope of the MAB by
the Hudson and James River and through
Delaware and Chesapeake Bays. At the
Last Glacial Maximum, thick sediment
piles had accumulated on upper slopes
and in shelf-edge deltas along parts of
the MAB, particularly across the head
of Hudson Canyon, between Baltimore
and Washington Canyons, and south of
Norfolk Canyon. Destabilization of these
shelf-edge deltas (e.g., Hill et al., 2004;
Dixon et al., 2012) contributed to subma-
rine slope failures that mar nearly the en-
tire upper slope, contributing to mass
transport deposits (MTDs) that today
blanket parts of the lower slope and
continental rise. Inactive pockmarks
(Brothers et al., 2014), widespread meth-
ane seepage (e.g., Skarke et al., 2014),

Figure 1. Map of the study area showing MATRIX (MX) seismic lines relative to
the three MAB gas hydrate prospects (Whale, MAS, and Hatteras) identified by
Frye et al. (2013). The green polygons extending from the upper slope to deep
water are slope failures (Twichell et al., 2009). The red points along the MATRIX
linesmark CMPswhere the neural net analysis produced confidence values greater
than 0.95. The white circles show locations of methane seeps (Skarke et al., 2014;
Baldwin et al., 2020b). The orange circles on MX07 and MX09 correspond to the
Norfolk seeps and Chincoteague seeps, respectively (e.g., Ruppel et al., 2022). Six
major shelf-break canyons (Hudson through Keller) within the study area are la-
beled on the shelf. Accomac and Phoenix Canyons, whose drainages cross some of
the seismic lines, lie south of Baltimore Canyon. Inset: Location map for this part of
the USAM, with the white box surrounding area shown in a larger map. Blake and
Sonema (southern New England margin; Ruppel et al., 2022) hydrate prospects
identified by Frye et al. (2013) are shown in blue shading, along with the
MAB prospects. The red and orange circles mark Long Island and Cape Cod, re-
spectively.
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and pervasive gas charging of shallow sediments (Hill
et al., 2004; Ruppel et al., 2022) characterize the contem-
porary outermost shelf and upper continental slope.

A recent study documents BSRs along the USAM from
the South Atlantic Bight to southern New England in seis-
mic data collected before 2018 but does not provide a
new map of the areal distribution of BSRs (Ruppel et al.,
2022). Here, we adopt the gas hydrate prospects defined
by BOEM (BOEM, 2012; Frye et al., 2013) based on the
analysis of BSRs in legacy seismic data as a starting point
for our study of MAB gas hydrate distributions in the
high-resolution MCS data acquired in 2018. From north
to south, the BOEM analysis identified three primary
gas hydrate prospects, which we call (1) the Whale Pros-
pect, (2) the Mid-Atlantic States (MAS) Prospect, and
(3) the Hatteras Prospect.

1) The Whale Prospect (Shedd and Hutchinson, 2006;
Ruppel et al., 2022) is a 12,000 km2 area south of the
deepwater extension of Hudson Canyon and coinci-
dent with the Chesapeake Drift. Prominent BSRs cut
across stratigraphy at approximately 3000 mbsl in
legacy data, and seismic reflection data acquired
in 2014 (Arsenault et al., 2017) also image a strong
BSR in the Whale Prospect (Ruppel et al., 2022).
Frye et al. (2013) identify the Whale Prospect as a
high certainty gas hydrate area.

2) The MAS Prospect lies at approximately 2000–
3500 mbsl and stretches roughly from the Delaware
River to the outlet of Chesapeake Bay. BOEM (Frye
et al., 2013) assigns intermediate probability to this
gas hydrate prospect, which has an area of approx-
imately 21,000 km2. Where BSRs can be recognized
in legacy USGS seismic data in this prospect, they
often run parallel to stratigraphic layering or are
coincident with unconformities (e.g., Majumdar
et al., 2019; Ruppel et al., 2022).

3) At approximately 4500 km2, the Hatteras Prospect is
the smallest of the northern USAM gas hydrate pros-
pects identified by BOEM (2012). The area with iden-
tified BSRs extends from shallower than 2000 to more
than 3500 mbsl, with the shallowest part being a nar-
row (approximately 20 km wide) neck that extends
up Keller Canyon following one of the USGS legacy
seismic lines. Similar to the MAS Prospect, the Hatte-
ras Prospect was identified at an intermediate confi-
dence level (Frye et al., 2013), and the BSRs are
difficult to discern in seismic amplitude data (Majum-
dar et al., 2019; Ruppel et al., 2019).

Data
This study relies on the continental slope portion of

approximately 2000 line kilometers of 2D MCS data ac-
quired during the 2018Mid-Atlantic Resource Imaging Ex-
periment (MATRIX) (Ruppel et al., 2019), which was led
by the USGS with additional support from the U.S. De-
partment of Energy (DOE) and BOEM. MATRIX acquired
data between Cape Hatteras and the deepwater extension
of Hudson Canyon at water depths of approximately 125

to almost 4000m, mostly alongmargin-parallel strike lines
and margin-perpendicular dip lines. The placement of
seismic lines was designed to sample landward and
through deepwater prospects identified by BOEM (Frye
et al., 2013) as having moderate to high probability of
BSRs based on an analysis of legacy USGS seismic data
acquired with lower source frequency and at lower tem-
poral and spatial sampling rates than the MATRIX data.

The seismic source for the MATRIX survey was two
or four 105/105 in3 Sercel generator-injector (GI) guns
towed in pairs from the R/V Hugh R. Sharp in August
2018. The air guns were run exclusively in GI mode
yielding maximum air-gun volume of 420 in3 (four air
guns). Shots were spaced at 25–35 m or at time intervals
roughly corresponding to this spatial interval and were
recorded on a 700–1200 m long digital streamer having
112–160 channels with 3.125 and 6.25 m group spacing.
Streamer positions were determined by depth loggers
along the streamer’s length and a GPS receiver mounted
on a tail buoy. Record lengths were 4–10 s, with sampling
intervals of 0.5–1 ms. Complete information about data
acquisition and processing is available from Baldwin
et al. (2020a), which also supplies the raw and processed
MCS data. Additional data associated with MATRIX have
been released by Baldwin et al. (2020b, 2021).

Processing of the raw MCS data included corrections
for 3D source and receiver geometry; common-midpoint
(CMP) binning along 2D crooked lines; frequency-wave-
number and band-pass filtering; wavelet extraction,
deterministic deconvolution, and zero phasing; and nor-
mal moveout correction, stacking, and poststack phase-
shift timemigration (Baldwin et al., 2020a). For the water
depths that are the focus of this study, normal moveout
along the streamer is minimal, and a 1D velocity profile
hung from the seafloor produces clear imaging in the
upper 1–2 s of sediments.

For the analysis undertaken here, we use the post-
stack time migration (post-STM) version of the MATRIX
data set as the starting point and focus only on analysis
of the subset of MATRIX data that was not collected
along strike lines at the shelf break. Those lines are
too shallow (<200 mbsl) for hydrate-related features to
be present. We do include in the analysis the entirety of
the MATRIX dip lines that image from the shelf-break
down the upper continental slope, even including data
at water depths nominally too shallow (less than approx-
imately 550 mbsl; Brothers et al., 2014) for hydrate-re-
lated features. The total number of CMPs for the data
set used in this analysis is approximately 567,000.

Methods
This section outlines the supervised NN methodol-

ogy applied to identify features associated with gas hy-
drate and/or free gas in the high-resolution MCS data.

Neural network
We use the NN module in OpendTect software (dGB

Earth Sciences, 2021) to develop a supervised multiattri-
bute pattern recognition model for seismic features that
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share characteristics with BSRs. The workflow follows
the outline of Meldahl et al. (2001) and involves selecting
a suite of seismic attributes that can identify seismic ob-
jects related to the gas hydrates and/or free gas; defining
a training data set that includes similar sample sizes from
locations with and without the targeted seismic objects
and extracting the selected set of seismic attributes from
the two classes; and then training the NN. The trainedNN
is then applied to the entire data set to identify all the
locations with seismic objects that share the base of
gas hydrate/top of gas characteristics with objects in
the training data set and to assign a confidence value
to these objects.

The supervised pattern recognition module of Open-
dTect NNs plugin (dGB Earth Sciences, 2021) uses a
feed-forward multilayer perceptron network (Hush and
Horne, 1993) that maps an input layer to an output (i.e.,
classification) layer via a set of hidden layers (Figure 2). A
back-propagation algorithm iteratively adjusts weights
that minimize the classification error between predicted
outputs and ground truth values in the training data set for
a given input-output pair. The weights determine the rel-
ative importance of input attributes for a specific output.

The general NN workflow used here has been applied
to seismic interpretation problems such as the identifica-
tion of fluid migration pathways and faults (Heggland
et al., 1999; Meldahl et al., 1999, 2001; Ligtenberg, 2005;
Kluesner and Brothers, 2016), reservoir characterization
(Walls et al., 1999; Tonn, 2002; Russell, 2004), geohazard
delineation (Aminzadeh et al., 2002; Heggland, 2004), seis-
mic facies analysis (West et al., 2002; Wrona et al., 2018),
and karst detection and imaging (Ebuna et al, 2018). Ma-
chine-learning and deep-learning approaches also have
been previously used for gas hydrate studies in other geo-

graphic settings. For example, Jeong et al. (2014) apply
an NN to estimate gas hydrate saturation in the Ulleung
Basin from seismic attributes and well-log data. Bedle
(2019) and Chenin and Bedle (2020) combine the seismic
multiattribute approach with rock-physics modeling to
identify weak BSR-like seismic reflections in the Pegasus
Basin, New Zealand.

Seismic attributes
To train the NN, we extract a variety of seismic attrib-

utes (e.g., Chopra and Marfurt, 2005, 2008) from the post-
STM data. In some studies, prestack attributes such as
amplitude-variation-with-angle/offset also have been
found to be diagnostic of the base of hydrates (Bedle,
2019; Chenin and Bedle, 2020). However, the MATRIX
data were collected with a relatively short streamer
(<1200 m), and the data lack the offsets needed to de-
termine prestack attributes at the water depths common
in the study area.

The post-STM-based seismic attributes that we chose
for training the NN detect changes in seismic properties
related to the presence of gas hydrate and/or free gas in
marine sediments (e.g., Satyavani et al., 2008; Hien et al.,
2010; Kim et al., 2014; Bedle, 2019). These attributes,
which are summarized in Figure 3, rely on amplitude
and frequency characteristics. As noted previously, BSRs
approximate the base of thermodynamic stability for gas
hydrates in sediments, but the negative polarity of these
features arises from the contrast in wavespeeds across
these reflections: Underlying sediments typically contain
at least a small amount of free gas, leading to lower
wavespeeds than those above BSRs, where gas hydrate
may or may not be present. However, gas hydrate prov-
inces may have features other than BSRs that are asso-
ciated with similar amplitude and/or frequency changes.
For example, free gas confined by lithologic or structural
traps leads to anelastic attenuation and suppression of
higher frequencies (e.g., Wood et al., 2000), characteris-
tics that may cause these features to have seismic attrib-
utes similar to BSRs. Distinguishing between free gas
associated with a BSR versus other features is difficult
when relying on poststack seismic attributes alone, espe-
cially where BSRs are roughly parallel to stratigraphy, as
they are in parts of the MAB. Because the attributes that
we use in the NN are more generally sensitive to the top
of gas than the presence of hydrate, we refer to features
identified by the NN framework as seismic indicators of
gas (SIG). Here, we briefly describe each of the seismic
attributes used in the NN framework.

The low-pass attribute x1 (Figure 2) is a <50 Hz low-
pass filter applied to post-STM amplitude data. The
MATRIX data were processed up to approximately
450 Hz and image gas charging in fine-scale structures.
The low-pass filter tunes these fine-scale features to a
single reflection, which is more reliably detected by the
NN. The low-pass data retain polarity, so this attribute
is sensitive to the negative impedance contrast associ-
ated with the top of the sediments hosting free gas.

Figure 2. Schematic of the multilayer perceptron NN used to
identify SIG. Nodes are shown as circles with network con-
nections marked by lines. The relative influence of each input
layer seismic attribute (x1–x6) on the classification is indicated
by the white-yellow-orange-red color scale, with red indicat-
ing higher weight (w). The relative influence of hidden layer
nodes is qualitatively indicated by gray scaling. The actual
neural net has many more hidden layers than the two shown
here. The network connection from the ith node in layer i− 1
to the jth node in layer i is weighted bywij . The output layer is
the probability (confidence) that a location in the seismic im-
age has the same characteristics as the attributes associated
with the BSR or top of gas in the training data set.
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We calculated several other attributes based on the
complex analytic signal. For an input amplitude trace
sðtÞ, the analytic is

AðtÞ ¼ sðtÞ þ igðtÞ ¼ EnvðtÞ exp½iΦðtÞ�; (1)

where gðtÞ is the Hilbert transform of sðtÞ;EnvðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðtÞ2 þ gðtÞ2

p
is the envelope, and ΦðtÞ¼ tan−1ðgðtÞ=

sðtÞÞ is the phase angle.
The delta envelope slope attribute x2 is the difference

in the first derivative of envelope averaged in windows
above and below each sample, which is a small time
section (e.g., 200 ms) of seismic data along a single
trace. Differencing of adjacent windows can be written
compactly as a convolution:

x2 ¼ F−1
�
F

�
dEnvðtÞ

dt

�
Ψ�

�
; (2)

where F and F−1 denote the forward and inverse Fourier
transforms, respectively, and Ψ is the Fourier transform
of a negative Harr-like wavelet, which, for a window
length of n samples, is −1=n for the first n samples and
1=n for the next n samples. The asterisk denotes the
complex conjugate. Envelope, like amplitude, is sensi-
tive to the impedance contrast at the top of gas.
Envelope data do not contain any polarity information
but are proportional to reflection energy, which helps
the NN distinguish the transition from lower-amplitude
sedimentary reflectors to higher-amplitude reflections
at the top of gas-charged sediments. The first derivative
of the envelope helps the NN detect the change from
low-to-high versus high-to-low-reflection energy, which
avoids duplicate detections on both sides of the signal
associated with the top of gas-charged sediments. This
change is highlighted by taking the difference of time
windowed averages above and below each sample.

Figure 3. Examples of data, attributes, and NN output. Data are from a section of MX12 (Whale Prospect) showing a prominent BSR
crosscutting stratigraphy. Far left panel shows the original amplitude sections from the seismic data. Panels with colored headers are
attributes used in the NN, and the w values are weights assigned by the NN. The NN result is shown in the far right panel. The arrow
marks the actual BSR location. Attributes and NN output are shown for (a) 100 ms and (b) 200 ms window sizes.
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The delta quality absorption factor attribute x3 is a
measure of attenuation. Here, “quality absorption” is de-
fined as the area under the power spectra beyond the
dominant frequency, weighted by frequency. This
attribute is determined by first calculating the short-
time power spectra in windows around each sample:

Aðt;ωÞ ¼ F−1½jSðωÞj2WðωÞ��; (3)

where SðωÞ and WðωÞ are the Fourier transforms of the
amplitude trace sðtÞ and a Gaussian window functionw,
respectively. Dominant frequency ω0ðtÞ is defined as the
frequency with the maximum power at each time:

ω0ðtÞ ¼ argmax
ω

Aðt;ωÞ: (4)

Then, a quality absorption factor QaðtÞ is calculated
from each short-time power spectra by integrating the
values beyond ω0:

QaðtÞ ¼
Xπ=dt
ω¼ω0

ωAðt;ωÞ; (5)

where the upper bound on the summation is the Nyquist
angular frequency. Finally, averages of adjacent win-
dows are differenced using

x3 ¼ F−1½F ½QaðtÞ�Ψ��: (6)

For simplicity, we set the width of the short-time power
spectra window W to match the width of Ψ. In the
presence of free gas in the sediments, high frequencies
are attenuated, causing the area beyond the dominant
frequency to decrease. Differencing adjacent windows
highlights this change.

Attenuation caused by gas or fluids below HBSs
is expected to produce a low-frequency anomaly. To
detect this change, we calculate a delta instantaneous

frequency attribute x4, which is the difference in instan-
taneous frequency between windows above and below
each sample. Ordinary instantaneous frequency can be
calculated from phase angle as

f ðtÞ ¼ 1
2π

dΦðtÞ
dt

: (7)

As described previously, differencing is accomplished
by convolution:

x4 ¼ F−1½F ½f ðtÞ�Ψ��: (8)

We also calculate the envelope weighted instantaneous

frequency attribute x5, which scales instantaneous fre-
quency by energy in the seismic trace and reduces
spikes and rapidly changing variations by applying a
Gaussian smoothing operator:

x5 ¼ F−1½F ½EnvðtÞf ðtÞ�W ��: (9)

The sweetness attribute x6 is the ratio of envelope to
the square root of instantaneous frequency (Radovich
and Oliveros, 1998), which we also smooth:

x6 ¼ F−1
�
F

�
EnvðtÞffiffiffiffiffiffiffiffi

f ðtÞp
�
W�

�
: (10)

Sweetness is often used to detect hydrocarbons (Hart,
2008). Along a BSR or other reflection at the top of
gas-charged sediment, a higher value of envelope and
a lower value of instantaneous frequency produce high
sweetness values. In contrast, a decrease in instantane-
ous frequency and amplitude, as is the case with attenu-
ation from spherical spreading, produces lower values of
sweetness. Similarly, a high-amplitude reflection with
high instantaneous frequency also produces a low sweet-
ness value, which may be indicative of a lithologic con-
trast without associated pore fluids or gas (e.g., a dry
structural trap).

Attributes used in the NN inherently include time aver-
aging, which causes a loss of resolution and also improves
spatial continuity and pattern recognition. The delta
envelope slope, delta instantaneous frequency, and delta
quality absorption factor attributes are all calculated by
taking differences of windowed averages from above and
below each sample. Sweetness and envelope weighted in-
stantaneous frequency are calculated with moving win-
dows. For each NN model, we set these window sizes
to a constant length. We evaluated the NN performance
for a range of window sizes (50–500 ms) for time averag-
ing to identify the optimal window that balanced gener-
alization and resolution of the results. Small time
windows produced higher resolution results (e.g., closely
matching the position of the BSR where it could be vis-
ually identified), but the resulting model was less appli-
cable to the data set as a whole.

Model performance was generally worse for window
sizes larger than 200 ms or smaller than 100 ms. The
performance of the NN based on these two different
attribute extraction window sizes is shown in Figure 2
and summarized in Table 1. To visualize the metrics, a
confusion matrix (Table 2) can be constructed that
compares the true and the model predicted outputs,
with the rows and columns, respectively, representing
the true and predicted classes. Based on these analyses,
we chose 200 ms as the optimal window size.

Training data set
To build a learning data set for training the NN, we first

visually identified BSRs within the Whale Prospect
(Shedd and Hutchinson, 2006) using MATRIX data. In the
center of Whale Prospect, BSRs are continuous and par-
allel to stratigraphy but can still be identified based on
their strong amplitude and reverse polarity. On the sea-
ward side of the mounded sediments that make up much
of the Whale Prospect, the BSRs cut across stratigraphy
and their character depends on the seismic frequency. At
frequencies above approximately 50 Hz, the BSRs appear
as discontinuous high-amplitude reflections where strati-
graphic units inferred to be charged with free gas inter-
sect the base of gas hydrate stability (BGHS), as shown in
Figure 3. At frequencies lower than approximately 50 Hz,
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these individual reflections appear continuous. For NN
training, we picked BSRs as continuous horizons based
on the lower-frequency data.

During the supervised learning, the NN assigns differ-
ent weights to the training seismic attributes. The perfor-
mance of the NN continues to improve as the algorithm
iteratively changes the assigned weights (Figure 4) until
learning is complete. One challenge associated with
training the NN using seismic attributes associated with
strong BSRs in the Whale Prospect is that the same
attributes may not be as useful in areas with more subtle
SIGs. For example, the envelope attribute was assigned
high importance in the Whale Prospect training data set
during our initial applications of the NN. However, much
smaller amplitude anomalies are associated with SIGs in
other parts of the MAB, meaning that the envelope attrib-
ute is not as useful for delineating these features outside
of the Whale Prospect. To mute the influence of raw
amplitude anomalies in NN learning, we combined am-
plitude and frequency anomalies by including the instan-
taneous frequency weighted by envelope.

Validation
The OpendTect NNs tool (dGB Earth Sciences, 2021)

uses a single hold-out cross validation method (Berrar,
2019) in which a small fraction (10% in our model) of
the training data set is randomly sampled into a valida-
tion (or test) subset (Hush and Horne, 1993). Training is
stopped when the percent misclassification and the test
normalized root-mean-squared (rms) error between the
NN predictions and true values start to increase after
decreasing for most of the model run. The best NN
model is associated with the smallest normalized rms
error and smallest misclassification, as
shown in Figure 4.

Choosing the highest SIG probabil-
ity at each CMP

Application of the NN produces a
probability or confidence value for each
sample in the seismic images. Values
greater than 1.0 are possible and, indeed,
expected in evaluating some of the seis-
mic lines. The first reason that probabil-
ities may exceed 1.0 is mathematical
and dependent on the extrapolation func-
tion used in the OpenDTect NN toolbox
(dGB Earth Sciences, 2021). The second
reason is physical and related to the
differences between the training data set
and the rest of the data to which the NN is
applied. For example, the NN for this
study was trained using seismic attributes
from places with and without a BSR in
the Whale Prospect. When seismic data
elsewhere in the MATRIX data set had
attributes that were even more indicative
of the desired seismic features than those

Table 1. Quantitative assessment of NN model
performance on a test data set for 200 and 100 ms
attribute extraction windows.

Error statistics 200 ms window 100 ms window

Normalized rms 0.35 0.5

Percent misclassification 5 8

Precision3 0.82 0.74

Recall4 0.97 0.92

F1 score5 0.89 0.82

3Precision is the ratio of true positives to the sum of true and false positives
from the NNs confusion matrix.
4Recall is the ratio of true positives to the sum of true positives and false
negatives from the NNs confusion matrix.
5The F1 score is the harmonic mean of precision and recall.

Table 2. Confusion matrices for 200 ms attribute
extraction window and 100 ms attribute extraction
window.

200 ms window Predicted BSR (%) Predicted non-BSR (%)

True BSR 19.98 0.54

True non-BSR 4.34 75.14

100 ms window Predicted BSR (%) Predicted non-BSR (%)

True BSR 18.82 1.63

True non-BSR 6.42 73.12

Values are given in percentages.

Figure 4. The neural net performance graphs for the (a) 100 ms and (b) 200 ms
time windows as generated by OpendTect. The top panel in each part of the fig-
ure shows the change in normalized rms misfit for the test data (blue) and the
training data (red) for an increasing number of neural net iterations on the x-axis.
The bottom panel shows the misclassification for the test and training data, and
the colored circles to the right indicate the relative weights (the yellow repre-
sents low and the red represents high) given to each of the input seismic attrib-
utes.
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in the training data set, a confidence value higher than 1.0
was produced.

We used the confidence values produced by applica-
tion of the NN to generate confidence images for each
CMP along each 2D seismic line used in this data set
(Figures 5, 6, 7, 8, and 9). The NN result for each
CMP has two measures of uncertainty, which are, re-
spectively, associated with the two-way traveltime
(TWT) and the confidence value itself. For the analyses
in this paper, we chose the SIG depth at the TWT cor-
responding to the highest confidence value along each
CMP. The TWT for the highest confidence values is
bracketed on the top at 100 ms below the seafloor
and on the bottom by a theoretical deepest viable BGHS

calculated for unrealistically cold bottom water temper-
ature and a low, 30°C/km geothermal gradient using a
mathematical fit (Ruppel and Waite, 2020) to the Sloan
and Koh (2007) hydrate stability determinations and as-
suming hydrostatic pressure within seafloor sediments
and 100% methane as the hydrate former in equilibrium
with standard seawater. The conversion from depth to
TWT for this bracketing was done assuming a constant
velocity of 1514 m/s below the seafloor. For the shallow
part of the sedimentary section, using this constant
velocity ensures that the bound will be at a larger TWT
than if we adopted a more realistic velocity model de-
rived from the long-offset USGS Atlantic margin data
set described by Arsenault et al. (2017).

Figure 5. Example results from neural net analysis of the MATRIX data are shown at the bottom, here overlaid on seismic amplitude
data along dip line MX12. The highest confidence picks at each CMP (red) and the WBA (blue; in thousands of counts), a proxy for
signal quality, are shown on the graph above the seismic image. The color scale for plotting confidence results means that only values
greater than 0.5 are visible, and the seafloor has been muted for plotting. The blue dots and lines show training picks for the NN. The
black line on the seismic image is a smoothed curve connecting the highest confidence (>0.95) for adjacent CMPs to highlight the best
picks and how they sometimes connect laterally to trace out a reflection or other feature. (a) Patchy high confidence values on the
upper slope. Some high confidence locations were not marked as SIGs because the values do not exceed the 0.95 threshold. (b) Section
with patchy high confidence and significant vertical oscillation of the highest confidence picks, possibly within a slump deposit. Note
the high confidence values identified by the NN despite some of the lowest signal quality (based on the WBA proxy — blue curve in
the top graph) along this line. (c) Discontinuous high confidence values crosscutting stratigraphy. (d) More than 20 km wide section
with no high confidence zone and a few high probability picks at dramatically different depths at approximately 65 km. (e) Laterally
continuous high confidence arrayed just below a strong BSR identified in the amplitude data. Despite oscillations in the signal quality
(WBA proxy), the confidence remains high throughout this section. (f) Lateral transition to discontinuous, shoaling, and poorly defined
high confidence values at a location with BSRs (shown by arrows and a red line) that are easily identified visually from the amplitude
data. Inset highlights the details of these features. (g) Lower confidence zone that roughly matches a BSR on the seaward side of the
mounded sediments and coincident with an area of lower signal quality as measured by the WBA.
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Figure 6. Composite seismic images and neural net results (shown as confidence overlaid on the seismic amplitude data) for the area
of the Whale Prospect. (a) Map showing the locations of seismic lines in this figure with the outline of the Whale Prospect in white.
Colors correspond to the seismic lines and the tie lines (vertical lines) on each panel of this figure. MX18 (dashed green) and MX01
(dashed blue) are associated with the MAS Prospect and are shown in Figure 7. (b) Strike line MX16, which images through the entire
Whale Prospect. The blue line marks where the line crosses anMTD from the slope failure map of Twichell et al. (2009). The confidence
color scale is the same for all parts of the figure. The gray box indicates the part of the line coincident with the Whale Prospect as
mapped by Shedd and Hutchinson (2006). (c) Dip line MX12. (d) Dip line MX13. (e) MX15, which connects MX16 and MX14; MX14, a
strike line seaward of the originally mapped Whale Prospect; and MX17, a line that connects MX16 and MAS Prospect dip line MX18.
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Some features identified as SIGs using this approach
could be false positives because some of the frequency
and impedance changes associated with SIGs also are
characteristic of the seafloor, sharp lithologic changes,
and other sedimentary features. Conversely, along at least
one line, BSRs are clearly visible on the seismic amplitude
data but not identified by the NN (false negative; see the
“Discussion” section). After choosing the SIG for each
CMP at its corresponding TWT based on the confidence
threshold, we then connected SIGs at adjacent CMPs. The
highest confidence values at adjacent CMPs may be asso-
ciated with TWTs that differ significantly, imparting an
oscillating quality to the high confidence zone along a
seismic line. Figure 5 shows an example of the effects
of applying a median filter to smooth confidence results

that exceeded 0.95 across CMPs on each 2D seismic line.
These smoothed confidence values and the correspond-
ing TWT values were used in the calculations described in
the “Discussion” section. Figure 5 also plots water bottom
amplitude (WBA) as a proxy for signal quality at each
trace. The units are given as raw counts, which are related
to the pressure digitized by each hydrophone, with no
correction for the instrument response.

Results
The overall character of the NN results is demon-

strated by the annotated segment of lineMX12 in Figure 5,
which shows the processed MCS data overlaid by confi-
dence values calculated with the NN and also the
smoothed final picks for the SIG for each CMP. Figure 5

Figure 7. Composite seismic images and neural net results (shown as confidence overlaid on the seismic amplitude data) for the area
of the MAS Prospect. (a) Map showing the locations of seismic lines in this figure with the outline of the MAS Prospect in white. Colors
correspond to the seismic lines and the tie lines (vertical lines) on each panel of this figure. MX17 (dashed purple) and MX13 (dashed
blue; Figure 8) are associated with the Whale Prospect (Figure 6). (b) Dip line MX18. The confidence color scale is the same for all
parts of the figure. The gray box indicates the part of the line coincident with theMAS Prospect as mapped by Frye et al. (2013). (c) Dip
line MX09, which crosses the Chincoteague seep field (Ruppel et al., 2022). Insets show the detail of two locations along this line.
Purple labeling refers to a deepwater drainage that connects tomajor canyons on the upper slope. (d) Dip lineMX07, which crosses the
Norfolk seep field, and short line MX08, a short strike line on the seaward side of the MAS Prospect. The blue line on the MX07 image
marks a crossing of a MTD from Twichell et al. (2009).
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highlights the lateral variability in the vertical position of
the SIG and the lack of an identifiable SIG for many CMP
based on the application of the NN and the criterion that
we impose on the confidence values (>0.95). Figure 5
also shows a comparison of SIG picks to the position
of a prominent, visually identified BSR, with the high con-
fidence zone determined by the NN lying just below the
BSR in this case.

In this section, we review the results of the NN analy-
sis for the MATRIX lines within and near the three ma-
jor MAB prospects identified by BOEM (2012): Whale
Prospect (lines MX12–MX17), MAS Prospect (lines
MX01, MX07–MX09, and MX18), and Hatteras Prospect
(lines MX02–MX05). As we examine the character of
the SIGs, we also identify features such as faults, which
can facilitate gas migration, and seafloor seeps, which
are a manifestation of gas migration. We also evaluate
laterally discontinuous or absent SIGs and note where
the seismic lines cross deepwater canyon drainages or
MTDs that can disrupt sediment thickness or composi-
tion, potentially leading to changes in the depth of the
BGHS (e.g., Ruppel and Waite, 2020).

Whale Prospect area
Although the NN was trained using BSRs that we

visually identified within the Whale Prospect, we sub-
sequently applied the NN to all MCS data on lines
MX12–MX17, which sample through and around the
Whale Prospect (Shedd and Hutchinson, 2006; BOEM,
2012; Ruppel et al., 2022). The NN analysis produces high
confidence values coincident with strong, visually iden-
tified BSRs within and near the Whale Prospect at ap-
proximately 135–170 and 130–180 km along dip lines

MX12 and MX13, respectively (Figure 6). High confi-
dence also emerges along the entirety of strike line
MX16 and connecting line MX15 and along part of MX17.

The results of the NN analysis support refinements to
the mapped extent of the Whale Prospect. As defined by
Shedd andHutchinson (2006) based on BSRmapping, the
landward boundary of the prospect approximately coin-
cides with the landward end of the deepwater high con-
fidence zone along MX13 at approximately 125 km. For
MX12, the high confidence zone continues landward ap-
proximately 35 km beyond the mapped edge (approxi-
mately 100 km distance along MX12) of the Whale
Prospect. Along MX12, this high confidence zone is con-
tinuous with the zone that tracks the BSR through the
Whale Prospect itself. However, the zone shoals land-
ward despite the nearly level seafloor and follows strati-
graphic layering between approximately 65 and 90 km.
As explored next, this shoaling portion of the high con-
fidence zone landward of the mapped Whale Prospect
may mark an SIG associated with the top of trapped
gas, instead of the BGHS.

On the seaward side of the Whale Prospect, the ends
of MX12 (beyond approximately 180 km) and MX13 (be-
yond approximately 185 km) have sparser distributions
of CMPs with confidence exceeding 0.95. The high con-
fidence zones still map out a laterally continuous and
relatively coherent SIG that is close to a visually dis-
cernible BSR. MX14, which is a short strike line con-
necting MX12 and MX13, is an example of a line that
has a clear BSR where the NN results do not yield
strong evidence for SIGs. In this case, the combination
of profoundwater depth (deepest for MATRIX at approx-
imately 4000 mbsl) and relatively small air-gun volume

Figure 8. The bottom panel shows the seismic amplitude image for strike line MX01 through the MAS Prospect overlaid with the
confidence results from application of the neural net. The position of MX01 and the tied seismic lines (colored vertical lines), along
with the scale for the confidence results, are shown in Figure 7. The purple labels show deepwater drainages connected to major
and minor shelf-breaking canyons, and the blue lines are MTDs from Twichell et al. (2009). The gray box shows the part of the line
that intersects the MAS Prospect as originally mapped by Frye et al. (2013). The top graph shows the maximum confidence along
the line at each CMP and the corresponding WBA (in units of thousands of counts), which is a proxy for signal quality. Orange
boxes and associated vertical dashed lines link intervals of low signal quality with the corresponding parts of the seismic image and
superposed confidence results.
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(two or four 105/105 in3 GI guns) produce a lower quality
seismic signal that leads to lower confidence values
when the NN algorithm is applied. The discontinuous/
low-probability SIGs at the distal ends of MX12 and
MX13 and along MX14 also may in part reflect a different
geometric relationship between stratigraphy and the
BGHS in this area, where the mounded contourite sedi-
ments of the Chesapeake Drift dip seaward.

The NN results along strike line MX16 and connecting
lines MX15 and MX17, which are approximately strike
lines as well, indicate that the northeastern boundary of
the main part of the Whale Prospect probably lies at least
approximately 10 km beyond its mapped position. On the
southwestern side, the high confidence zones at the end
of MX16 and continuing into the adjacent part of MX17
show that the Whale Prospect probably extends at least
approximately 10 km farther toward the deepwater
drainage that can be traced back to Baltimore Canyon.
However, the high confidence zone disappears across
this submarine canyon on MX17, just as the high confi-
dence zone is absent along MX13 where it sideswipes
this drainage at 80–120 km along the line. The Baltimore
Canyon drainage could have a different lithology or miss-
ing gas charge, or the lack of high confidence within the
drainage could reflect its position at the southwestern
edge of the Chesapeake Drift, where sediments thin.

Along MX12 and MX13, the upper slope has high
confidence zones that are laterally discontinuous with

high-probability zones identified seaward of the toe of
the slope. The high confidence upper slope zones also
are more diffuse and have less of the appearance of an
interface than comparable zones in deeper water. The
upper slope high confidence zones on these lines shoal
landward, as would be expected if the NN is detecting
the BGHS, and they follow the stratigraphy for short dis-
jointed segments along MX12 but are less coherent on
MX13. At some upper slope locations along MX12 (e.g.,
approximately 11 and 18 km), discontinuities in the high
confidence zones coincide with faults that disrupt the
near-seafloor sediments, lending credence to the idea
that the identified SIGs may trace gas trapped by specific
strata.

MAS Prospect area
Dip lines MX18, MX09, and MX07 traverse the MAS

deepwater gas hydrate prospect identified by BOEM
(Frye et al., 2013) and image the area landward to the
shelf break (Figure 7). High confidence picks roughly
coincide with bright reflections that are subparallel to
bedding in the deepwater sections of MX18 (90–160 km),
MX09 (70–180 km), and MX07 (70–110 km). Landward of
these sections, the high confidence zones crosscut stratig-
raphy at a shallow angle and generally shoal, while re-
maining roughly parallel to the seafloor. The bright
reflections that overlap with the high confidence picks
on the MAS dip lines are not laterally continuous within

each seismic section, and the lower reso-
lution of the NN results relative to the
seismic amplitude images makes correlat-
ing the high confidence zones with spe-
cific strong reflections challenging.

The upper slope sections of the MAS
MATRIX dip lines constrain the subsea-
floor structure on the part of the northern
USAM where more than 250 methane
seeps have been discovered (Skarke
et al., 2014). Most of these seeps are on
the uppermost slope between 200 and
600 mbsl but some emit methane from
the seafloor at depths well within the
gas hydrate stability zone (deeper than ap-
proximately 550–575 mbsl on this margin;
Brothers et al., 2014). At approximately
18 km, MX07 crosses the extensive Nor-
folk seep field (Skarke et al., 2014; Ruppel
et al., 2022), which includes dozens of
seeps at water depths of approximately
1400 m. The high confidence picks shoal
toward the seafloor beneath the Norfolk
seep field, consistent with shoaling of
the BGHS within gas chimneys (e.g., Yoo
et al., 2013). At approximately 180 km
along MX09 high confidence picks shoal
dramatically beneath the Chincoteague
seep field (e.g., Ruppel et al., 2022), where
the seafloor is approximately 1100 m
deep. Similar shoaling of a feature inter-

Figure 9. The left part of each panel shows water bottom counts for the seismic
amplitude (blue) and confidence (red) for each CMP along a given seismic line.
The right part shows the crossplot of confidence and water bottom counts, with
the shaded portion being below 0.95 confidence. (a) Results for MX01, the line
shown in Figure 8 of the text. The correlation between confidence and signal
quality is strong for this line, as shown by the red line on the crossplot. (b) Results
for MX08, a line in deeper water but nearly subparallel to MX01. There is no good
correlation between signal strength and confidence on this line. (c) MX12 is a dip
line in the training data set for the NN and also does not show consistently low
confidence for low signal strength.
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preted as the top of the gas in the sediments has been
noted in the high-resolution MCS data across this seep
field (Ruppel et al., 2022). High confidence picks also
shoal at approximately 130 and 140 km on MX18, but
methane seeps have not yet been detected at these loca-
tions despite several modern water column bubble plume
surveys across this area (e.g., Baldwin et al., 2020b), in-
cluding during acquisition of the MATRIX data. Progress-
ing landward, the high confidence zones continue from
the deepwater areas beneath the uppermost slope and
shoal on all threeMAS dip lines. The high confidence zone
approaches the seafloor at approximately 0.7 s TWT (ap-
proximately 525 mbsl) on MX09 and MX18 and approxi-
mately 0.5 s on MX07 (approximately 370 mbsl). Despite
numerous USGS surveys for water column gas flare
anomalies from 2015 to 2019, seeps that could be the sea-
floor manifestation of the shoaling high confidence zones
on the uppermost slope (approximately 400mbsl) have so
far been detected only along MX09 (Skarke et al., 2014)
but not on MX07 or MX18.

MX01 is an approximately 250 km long strike line
through the MAS Prospect at a location where the sea-
floor is approximately 2775 mbsl. For over half of the
distance between approximately 40 and 180 km, the NN
algorithm identifies a high confidence zone at approx-
imately 0.5 s (approximately 375 m) below the seafloor
and close to prominent reflections (Figure 8). Along the
rest of MX01, high confidence zones are shallower or ab-
sent, often correlating with locations where signal qual-
ity degraded. The WBA plotted in Figure 8 show that the
intervals with low confidence values or shoaling of the
high confidence zone (e.g., across the Accomac Canyon
drainage and to the left of the Currituck slide MTD) cor-
respond to lower signal quality on this line. This relation-
ship is verified by crossplotting these factors for MX01
(Figure 9). Figure 9 underscores that this signal quality
issue does not affect MX08, a short but high-quality line
subparallel to MX01 (Figure 1) and in deeper water (Fig-
ure 7). Running the same calculations on the training
data set along the Whale Prospect dip line MX12 (Fig-
ure 5) also does not reveal a strong correlation between
lower confidence and lower signal quality, especially for
confidence values exceeding 0.95, the threshold chosen
for presenting the NN results. In fact, along some sec-
tions of MX12 (CMP > 35,000) signal quality is low
but confidence is high.

Hatteras Prospect area
MX02 and MX03 (Figure 10) form a north to south

strike line at approximately 3100 mbsl imaging south of
the MAS Prospect and then through one of the widest
parts of the Hatteras Prospect, respectively. MX02 crosses
a series of faults spaced less than a kilometer apart and
cutting throughmuch of the section. TheMATRIX seismic
amplitude data reveal no compelling evidence that these
faults tap into the gas at depth or are the locus of gas mi-
gration through the sediment. The NN analysis yields in-
termediate confidence (approximately 0.5) in vertically
smeared zones roughly aligned with some of the faults

although resolution of the NN image is too low to link
the results to individual faults. The only high confidence
values on MX02 are on the southern part of the line in the
final approximately 10 km section near the tie with MX03.
These high confidence values are spatially associated
with prominent reflections.

Along MX03, acquisition parameters varied, with the
section beyond 70 km having generally higher source lev-
els. The sea state and strong current also affected the
quality of the data. The highest confidence zones along
MX03 are at 20–40, 70–80, and from 100 km to the end
of the line. All of the high confidence picks roughly
coincide with strong reflections, particularly at distances
greater than 70 km. The high confidence zone in the
20–40 km section deepens more rapidly than the seafloor
and cuts across some reflections, implying that these re-
sults are likely not highlighting a BSR.

MX04 and MX05 combine to form a crooked dip line
in the area between the MAS and Hatteras Prospects.
MX04 cuts acutely across Keller Canyon and an MTD
at approximately 2300 mbsl, whereas MX05 is a dip line
from 1900 mbsl to the top of the slope north of Keller
Canyon. MX05 runs parallel to, but does not coincide
with, an MTD mapped by Twichell et al. (2009) and ter-
minates at methane seeps on the upper slope. The NN
analysis (Figure 10) identifies a continuous high confi-
dence zone at approximately 15 km from the west side
of MX04 joining with the east side of MX05. This zone is
roughly coincident with strong reflections that mimic
seafloor bathymetry. Data are incomplete along the
upper slope on MX05, and the available results highlight
sparse and laterally discontinuous high confidence zones
in this area. This contrasts with the nearly uniform high
confidence zones beneath the upper slopes on MX07 and
MX09 and the next two dip lines to the north.

Discussion
In this section, we explore the significance of the

high confidence zones identified by the NN, implica-
tions of the SIGs for local and regional scale petroleum
system features, and potential refinements to gas hy-
drate distribution based on the NN results.

The physical meaning of high confidence picks
Interpreting the physical meaning of high confidence

picks that emerge from the NN analyses described in the
“Results” section is the fundamental challenge for this
study, particularly when these picks are arrayed in a
laterally continuous zone that might be interpreted as
tracing out an interface. Do these picks indicate BSRs
separating HBSs above from underlying gas-charged
sediment? Or do high confidence picks coincide with
the top of free gas without necessarily implying anything
about the existence of gas hydrate? Are there other
physical reasons that high confidence picks can highlight
a laterally continuous zone in the seismic sections?

Oneway to calibrate the confidence bands that emerge
from the application of the NN to the MATRIX data is by
analyzing the qualitative correlation between confidence
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results and strong, visually identified BSRs in the Whale
Prospect (Figures 5 and 6). For example, in the center of
the Whale Prospect, very high confidence (>0.95) NN
picks coincide with a prominent BSR
identified visually in MATRIX amplitude
data (MX12, 13, and 16) and at compa-
rable depths below the seafloor in older
seismic data (e.g., Shedd and Hutchinson,
2006). Confidence values are lower (<0.9)
where BSRs are harder to discern on the
seaward side of the Chesapeake Drift on
MX12 and MX13, as explored in the “Dis-
cussion” section.

Another way to evaluate the physical
significance of the NN-based confidence
values is by comparing the results with
theoretical bounds on the morphology
of the BGHS. For each CMP having
the highest smoothed confidence ex-
ceeding 0.95, Figure 11 shows the depth
(m) below the seafloor of that pick
converted using 1.78390878e − 04 � t2
þ 7.22966846e − 01 � tþ 0.361001632,

where t denotes the TWT in ms relative to the seafloor.
This expression was found by fitting velocities deter-
mined by traveltime tomography on long-offset USAM

Figure 10. Composite seismic images and neural net results (shown as confidence overlaid on the seismic amplitude data) for the
area of the Hatteras Prospect. (a) Map showing the locations of seismic lines in this figure with the outline of the Hatteras Prospect
in white and the confidence color scale, which is the same for all parts of the figure. Colors on the map correspond to the seismic
lines and the tie lines (vertical lines) on each panel of this figure. (b) Components of a composite dip line made up of MX04 and
MX05. The blue lines are the positions of MTDs from Twichell et al. (2009). (c) Components of a composite strike line made of up of
MX02 and MX03. The purple labeling refers to deepwater drainages that connect to major upper slope canyons.

Figure 11. Depth below the seafloor (meters below seafloor or mbsf) of highest
confidence for each CMP in the MATRIX lines used for this study, with only points
having confidence greater than 0.95 plotted. SIG indicates a seismic indicator of
gas. Points are color-coded as shown in the lower left, depending on the general
area in which each seismic line was acquired. The heavy light gray and dark gray
curves correspond to the theoretical BGHS calculated for two different geotherms
(30 and 55 mK/m, respectively) using the parameters defined in the text.
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seismic data collected by the USGS using large air guns
(Arsenault et al., 2017). For comparison, Figure 11 also
shows the depth below the seafloor of the BGHS for
two geothermal gradients (30°C/km and 55°C/km) using
the approach outlined in the “Methods” section. To
make the BGHS bounds as conservative (wide) as pos-
sible, the bottom water temperature (seafloor boundary
condition) at each water depth used for the fit was 1°C
colder (for the cold geotherm endmember) or warmer
(for the warm geotherm endmember) than that mea-
sured at the comparable depth in the water column off-
shore Virginia for a full ocean-depth conductivity-
temperature-depth cast. Across the MATRIX data set,
most high confidence picks plot within the BGHS
bounds in Figure 11, implying that the features assigned
high confidence by the NN analysis could be related to
the gas hydrate dynamics.

Based on this calibration of the NN results, we infer
that different confidence values correlate with qualita-
tive categories (high, intermediate, and low probability)
for the presence of gas hydrate just above the BGHS and/
or, more likely, free gas trapped immediately beneath the
BGHS. However, it is inappropriate to interpret a confi-
dence interval in the NN results as corresponding to the
percentage likelihood that a BSR exists or that gas
hydrate is present at that location. For example, a 0.7
confidence value should not be interpreted as indicating
that there is a 70% likelihood of a BSR at that depth. We
emphasize that the qualitative categories also have an as-
sociated uncertainty based on the choice of the thresh-
old value for high probability. If the high confidence
threshold were set at 0.9 or 0.925 instead of 0.95, approx-
imately 10% (174 km) or 5.3% (92 km) more of the seis-
mic lines would be included in the high confidence picks,
respectively. For a stricter threshold of 0.975 as the high
confidence threshold, 6.4% fewer line kilometers
(111 km) would be within the high-probability category.

Without borehole logging or drilling to confirm the
presence of gas hydrates, high confidence picks pro-
duced by the NN for this short-offset MATRIX data set
cannot be unequivocally interpreted as indicating the
existence of gas hydrate or implying that gas hydrate
saturations exceed a certain percentage of pore space.
Based on the nature (frequency and amplitude depend-
ence) of the seismic attributes chosen for this analysis,
the highest confidence picks are most likely related to
the top of the sediments charged with free gas, not nec-
essarily the base of gas hydrate. As discussed by Xu and
Ruppel (1999) for homogeneous sediments and as ex-
plored in detail by Ruppel and Waite (2020) for a range
of scenarios, the actual base of gas hydrate coincides
with the top of free gas only when gas is present in
excess of local methane solubility in pore space near
the thermodynamic stability boundary. All natural sedi-
ments are inhomogeneous at some spatial scale, and
hydrate often accumulates at higher saturations in
layers with higher relative permeability (e.g., diatoma-
ceous layers in hemipelagic ooze and sandier layers in-
terbedded with silts and clays; e.g., Kraemer et al., 2000;

Malinverno, 2010; Boswell et al., 2011), even if those
layers are shallower than the thermodynamic stability
boundary or the top of gas-charged sediments (e.g., Cook
and Malinverno, 2013; VanderBeek and Rempel, 2018;
Ruppel and Waite, 2020). The interpretation that high
confidence picks most likely trace the top of gas-charged
sediments is supported by high confidence values that
emerge at lower slope unconformities (e.g., on lines
MX07 and MX09). These unconformities typically mark
lithologic changes, and the associated permeability con-
trasts could lead to free gas being trapped below.

The NN also identifies high confidence zones below
the steepest parts of the upper continental slope
(<2000 mbsl) on most dip lines. These upper continental
slope high confidence zones are unlikely to have a single
explanation. As noted previously, some of the high con-
fidence zones follow stratigraphic layering, bright reflec-
tions, and/or unconformities. High confidence at such
interfaces is most likely to indicate gas charging. Other
high confidence picks cross-cut stratigraphy (e.g., 40–
110 km along MX07) and roughly follow the seafloor, im-
plying coincidence with the thermodynamic BGHS. On
MX07 and MX09, the shoaling of the high confidence
picks beneath the Chincoteague and Norfolk deepwater
seep fields is consistent with perturbation of the BGHS
across the gas chimneys that feed these seafloor seeps
and that have been identified in high-resolution imagery
(e.g., Ruppel et al., 2022).

Implications for regional gas hydrate and/or
shallow free gas distribution

Although the MATRIX data do not cover as much
area as the USGS legacy data used by BOEM (Frye et al.,
2013) to map the BSR polygons shown in Figures 1 and
13, the NN results obtained from the analysis of the new
data set still provide critical information to refine the
distribution of seismic features that may be related to
the presence of shallow free gas or gas hydrate. For the
polygons corresponding to the Whale, MAS, and Hatte-
ras Prospects, the maximum smoothed confidence val-
ues exceed 0.95 at the SIGs for 86.3%, 70.9%, and 26.4%,
respectively, of the CMPs along the segments of the in-
tersecting MATRIX lines. Overall, only 52.4% of the CMP
confidence values exceed even 0.85 within the Hatteras
Prospect. These SIG results confirm inferences about
BSRs made earlier based on the visual analysis of
MATRIX (e.g., Majumdar et al., 2019; Ruppel et al.,
2019) and legacy (Frye et al., 2013) seismic data: BSRs
are well developed within the Whale Prospect, but sim-
ilar features are harder to discern in the MAS Prospect
and especially near the Hatteras Prospect. These results
also provide greater confidence that some of the stra-
tigraphy-parallel reflections identified through visual
analysis in the MAS and Hatteras Prospects have the
characteristics of seismic features associated with the
top of free gas.

Within a marine petroleum systems framework (e.g.,
Hutchinson et al., 2008; Ruppel et al., 2019), the pattern
of SIG (and BSRs) along the northern USAM could
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reflect variations in the characteristics of either the gas
charge or the so-called container, which here refers to
the sediments that host and sometimes trap free gas and
gas hydrate. For gas charge, seismic methods cannot
distinguish microbial from thermogenic methane. Thus,
any assessment of possible spatial variations in gas
charge that could produce differences in SIG/BSR char-
acteristics must focus on physical differences. To first
order, stronger BSRs or SIGs with higher confidence
may be associated with larger volumes of free gas or
gas hydrate. Spatial variations in gas charge could be
related to the thickness of the sedimentary section over
the basement, assuming that the thicker sediments may
contain more organic carbon to drive the production of
microbial methane. Analysis of the correlation between
USAM sediment thickness andmaximum confidence val-
ues obtained at each MATRIX CMP shows that median

SIG confidence values exceed 0.9 at CMPs where the
sediment thickness is approximately 4200 m or greater
(Figure 12a). However, along individual seismic lines,
the 4200 m condition is necessary for confidence to ex-
ceed 0.9 but not sufficient. For example, on the Hatteras
area line MX02, sediment thickness is approximately
5750–6750 m, but median confidence never reaches
0.9. On dip line MX18, a high-quality line through the
northern end of the MAS Prospect, sediment thicknesses
fall in bins from approximately 5250 to 11,250 m, and
median confidence exceeds 0.9 for sediment thicknesses
less than 9250 m. These observations imply that gas
charge, here interpreted through the proxy of sediment
thickness, may not be the only factor linked to high con-
fidence in the ML results.

In the petroleum systems framework, variations in
the characteristics of the free gas/gas hydrate container

also may explain some of the spatial
differences in the SIG confidence values
shown in Figures 1 and 11. The quality of
the container is related to the lithology
and sedimentary processes, as well as
structural features that may contribute
to the focusing or trapping of migrating
fluids. For example, coarse sands are
known to host the highest saturations
of gas hydrate in other marine margin
settings (Torres et al., 2008; Boswell et al.,
2012). However, the well-studied Blake
Ridge sediment drift deposit has promi-
nent BSRs but low gas hydrate satura-
tions within fine-grained sediments (e.g.,
Holbrook et al., 1996; Collett and Ladd,
2000).

To assess these lithologic relationships
for the MATRIX data set, we examine SIG
confidence values as a function of sand
content inferred by BOEM (Frye et al.,
2013) for the upper 2000 ft (approxi-
mately 610m) of the sedimentary section.
Within the BOEM-defined prospects, Fig-
ure 12b demonstrates that the Whale
Prospect, followed by the MAS Prospect,
has higher average sand content in the
upper approximately 610 m than the
Hatteras Prospect does. For the whole
MATRIX data set, which includes the
BOEM prospects and adjacent areas im-
aged by the survey, sand content greater
than approximately 27.5% is associated
with median SIG confidence values
greater than 0.9 (Figure 12c). The rela-
tionship does not hold along the individ-
ual lines or in the areas of individual
prospects though. For the Whale Pros-
pect area, median SIG confidence values
exceed 0.9 for sand content of 12.5–27.5%
and greater than 37.5% but not for inter-
mediate sand contents. Near the MAS

Figure 12. Assessment of the results of the neural net analysis of the
MATRIX seismic data in terms of the total petroleum system focuses on the pos-
sible gas charge (to first order related to sediment thickness) and the reservoir
quality (related to sand content). (a) Bars show median value of confidence
determined by the NN for all MATRIX CMPs as a function of binned sediment
thickness as determined from USGS legacy seismic data. The red line is the aver-
age, and standard deviation of the confidence values in each bin is shown. The
blue line represents a confidence value of 0.9. (b) Histogram showing the fraction
of MATRIX CMPs intersecting theWhale, MAS, and Hatteras Prospects and having
a given percentage sand in the uppermost approximately 610 m based on the
BOEM mapping (Frye et al., 2013). The Hatteras Prospect is far more poorly
sampled by MATRIX lines than the MAS and Whale Prospects. However, the over-
all result shows that the Whale Prospect has the highest sand content, which is
skewed toward higher values but with a broad range. The MAS Prospect is domi-
nated by intermediate sand contents and also has a spread of values, whereas the
MATRIX lines cross the Hatteras Prospect where sand content is on average lower
but constrained to a smaller range of values. (c) The same as (a), with the maxi-
mum confidence at each CMP binned according to the sand percentage in upper-
most approximately 610m of sediment (Frye et al., 2013). (d) The same in (a), with
the maximum confidence at each CMP binned by multiplying the percentage sand
at each location (Frye et al., 2013) by the total thickness of sediment at a location
to determine the composite sand thickness at each CMP.
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Prospect, the 0.9 median confidence threshold is reached
at sand content greater than 27.5%, and in the Hatteras
area, the 0.9 median confidence is not met for any sand
content values, which span the range from 17.5% to 37.5%.

Although clear patterns do not emerge from this
analysis, the area near the Whale Prospect has the high-
est overall SIG confidence values, the strongest visually
identifiable BSRs, and the highest sand content, in ad-
dition to the structural trap created by the mounding of
seafloor sediments deposited in a relatively quiescent
setting of the Chesapeake Drift. The Hatteras area, with
its relatively low sand content, pervasive mass wasting
deposits, and strong currents (Gulf Stream and Deep
Western Boundary Current) has low overall SIG confi-
dence values and poor conditions for the development
of gas hydrates or accumulations of free gas.

We also conducted analyses that combine information
about sediment thickness (Figure 12d) or thicknesses of
parts of the sedimentary section (e.g., depth to the top of
the Pliocene and thickness of Pliocene to top of the
Cretaceous interval; Frye et al., 2013) with the sand con-
tent in the upper 2000 ft (approximately 610m; Frye et al.,
2013) to test whether a combination of gas charge prox-
ies and container information could explain patterns in
the SIG confidence values. For these calculations, we
multiplied the percentage of sand in the upper approxi-
mately 610 m from Frye et al. (2013) by sediment thick-
ness to approximate how much of the whole interval is
represented by sand. For example, if a CMP location has
4000 m of sediment and 25% sand in the
upper approximately 610 m, we used
1000 m as the thickness of the sand at
that location, assuming sediments deeper
than approximately 610 m had the same
lithologic distribution as the shallower
section. Using this approach, we found
that the median SIG confidence values
showed no dependence on the assumed
thickness of the sand section within the
younger than Pliocene sediments or the
Pliocene to Cretaceous section. How-
ever, for the entire sedimentary section
at each CMP, median SIG confidence
only exceeds 0.9whenmore than approx-
imately 1900 m of sand was present, as
shown in Figure 12d. This crude measure
implies that a combination of gas charge
(sediment thickness) and container qual-
ity (lithology) might be used as a predic-
tor for high-probability SIGs within the
MAB.

Implications of local variations in
SIG confidence values

The regional patterns of SIGs dis-
cussed previously may reflect broad
changes in factors such as sediment
thickness and sediment type, but local
variations in SIG confidence values are

more likely to result from features such as shingled faults
in the shallow section or lithologic changes associated
with MTDs near the seafloor or deepwater canyons.

Figures 6–8 and 10 label deepwater drainages that are
the extensions of shelf-break canyons on the lower
continental slope and the continental rise. We previously
noted that the Baltimore Canyon deepwater drainage
truncates high confidence zones in the Whale Prospect
area and also is associated with the absence of a high
confidence zone at the beginning of MX01. However, the
many deepwater canyon drainages crossed by the re-
mainder of MX01 (Figure 8) are not consistently associ-
ated with the disruption of high confidence zones.
Across the deepwater Phoenix Canyon, the highest con-
fidence picks are continuous and retain high-probability
values. The high confidence zone remains continuous
but is deflected downward beneath the deepwater Wash-
ington and Norfolk drainages (Figure 8).

The presence of MTD, which typically add sediment
to the seafloor and temporarily lower thermal gradients
as they develop (e.g., Ruppel and Waite, 2020), also
shows no consistent relationship with the lateral con-
tinuity or absolute confidence values in the data set.
For example, MTDs crossed by MX01 at distances up
to 180 km along the line are associated with uniformly
high confidence in a zone continuous with adjacent
parts of the line in two of the three cases. At the third
MTD encountered along MX01 (approximately 65 km
distance), the high confidence zone disappears within

Figure 13. Regionalization of the results from applying the neural net frame-
work to the MATRIX seismic data along the lines shown. The yellow polygons
outline the gas hydrate prospects identified by BOEM (Frye et al., 2013) based on
mapping of BSRs in legacy seismic amplitude data. Only confidence levels
greater than 0.9 are shown. The compiled results expand the area with SIG
on this margin relative to the original BSR polygons.
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the MTD, not at its edges. Only where MX01 crosses the
Currituck slide, a large volume MTD (Hill et al., 2017)
known to be associated with BSRs along parts of its
length (e.g., Ruppel et al., 2022), is the edge of the MTD
correlated with the loss of high confidence.

Refining gas hydrate prospects
The high confidence zones shown in Figure 13 ex-

pand the potential area for shallow gas features and
possibly gas hydrates on the northern USAM beyond
the polygons first mapped by BOEM and also show that
the BOEM polygons may need to be redrawn to shrink
gas hydrate prospects where the NN algorithm did not
detect high confidence for SIGs in the MATRIX data.
The MATRIX data set does not have as complete areal
coverage as the legacy USGS seismic data used by
BOEM in construction of the original BSR map, mean-
ing that only qualitative comparisons are possible be-
tween the two sets of results.

The map (Figure 13) derived by applying an NN
approach to the MATRIX data to identify SIGs expands
the overall area possibly associated with hosting gas or
hydrate-related features. For this analysis, we assess
the likelihood of SIGs being present based on the lateral
continuity and uniformity of NN-derived confidence val-
ues greater than 0.9 at each CMP. High likelihood areas
have nearly continuous confidence values of 0.95 or
greater along the seismic lines. Intermediate likelihood
zones have confidence that typically exceed 0.9 nearly
continuously along the seismic lines but with more 0.9–
0.95 values than in the high likelihood zones. Lower
likelihood areas still have SIGs in places, but the high
confidence zones are laterally discontinuous, which
may indicate that SIGs are only patchy.

The most important difference between the new map
and the originally defined BSR-based prospects that
BOEM generated (BOEM, 2012; Frye et al., 2013) is
the expansion of the MAS Prospect to include a high like-
lihood area between the upper continental slope and ap-
proximately 2000 mbsl. This expanded MAS Prospect
encompasses the high confidence values found along
MX07 and MX09 and may extend from north of Washing-
ton Canyon to south of Norfolk Canyon along the USAM.
The new map also reveals a landward expansion of the
main part of the Whale Prospect in a high likelihood zone
along MX12. Most of the upper slope landward of the
Whale Prospect (MX12 and MX13) and landward of
the northern part of the MAS Prospect (MX18) is catego-
rized as an intermediate likelihood zone, with SIGs not as
pronounced or laterally continuous as along MX07 and
MX09. This area has not formerly been included in BSR
maps except for the part of line 18 that lay within the
original MAS Prospect as mapped by Frye et al. (2013).

Due to sea state, weather, and currents, we were not
able to collect MATRIX imagery through much of the
Hatteras Prospect. The data that we analyzed confirm
that part of the Hatteras Prospect has intermediate like-
lihood for SIGs, consistent with BOEM’s determination
that this prospect had less certain BSRs than the Whale

Prospect or Blake Ridge. Our map potentially expands
the area of intermediate likelihood to include the upper
slope just north of the Hatteras Prospect as well.

The refinement of MAB gas hydrate prospects shown
in Figure 13 necessarily omits areas not traversed by
MATRIX data. For example, Ruppel et al. (2022) note that
a dip line acquired along the Currituck slide, which lies
between the Hatteras and MAS Prospects, has evidence
for BSRs and consider BSR features on a legacy seismic
line on the southern New England margin (Sonema of
Figure 1, inset) east of the Whale Prospect as well.

Conclusion
We applied a supervised NN framework to newly ac-

quired high-resolution MCS data to identify seismic ob-
jects associated with the presence of free gas and/or gas
hydrates in marine sediments on the northern USAM
between Cape Hatteras and Hudson Canyon. BSRs
can be difficult to discern through visual analysis of seis-
mic amplitude data in parts of the study area, and the NN
approach, which used seismic attributes based primarily
on frequency and amplitude characteristics, allowed us
to identify SIG, which we interpret as features marking
the top of free gas or possibly related to the presence of
gas hydrate. The seismic attributes found to be the most
diagnostic of SIG features were sweetness, envelope
weighted instantaneous frequency, envelope slope, and
low-pass amplitude. The SIGs were correlated with clear
BSRs in the Whale Prospect, corresponded to strong
reflections in some other parts of the study area, and
shoaled beneath known deepwater seep sites, all charac-
teristics that would indicate that the SIGs might be inter-
preted as BSRs in some locations. In addition, the depths
of the highest confidence SIGs at each CMP in the data
set lie mostly within broad bounds on theoretical BGHS
for this margin. High-confidence SIGS are more likely to
be associated with higher sand content (which has only
been determined in the uppermost approximately 610 m
of the section), but the interpretation does not hold for
individual lines and may be biased by the relatively high
sand content and predominance of high-confidence SIGs
in the Whale Prospect. Within a petroleum systems
framework, the higher confidence SIGs appear to corre-
late with a combination of sediment thickness and sand
content. This implies that the container size and charac-
teristics and the gas charge may play a role in our detec-
tion of gas-related features.

Our analysis determined high confidence for the pres-
ence of shallow gas or possibly gas hydrate inWhale Pros-
pect and parts of the MAS Prospect. The neural net also
revealed SIG features beneath the upper continental
slope landward of the approximately 2000 m isobath and
extending nearly to the shelf break, implying that the area
associated with shallow gas and/or hydrate on the
northern USAM is likely significantly larger than previ-
ously mapped. In some places, the SIGs as determined
by the NN were laterally discontinuous, which could re-
flect variations in gas charge and changes in the character
of the sediments (e.g., across deepwater canyons). Other
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gaps in high-confidence SIGs or unexplained shoaling of
SIGs appear to be related to changes in acquisition param-
eters, especially along the first line collected (MX01) for
this data set.

Supervised deep-learning approaches using NN hold
promise for the identification of SIGs in seismic data sets
where features such as BSRs are difficult to map based
solely on visual analysis of amplitude data. Supervised
NN does have some disadvantages, including the neces-
sity of training on a data subset in which the desirable
features (e.g., BSRs) are well developed and the difficulty
of applying anNN trained on a specific seismic data set to
another data set acquired with different parameters
(e.g., numbers of guns and array geometry). Nonetheless,
the NN approach used here provides confidence that fea-
tures associated with shallow gas and/or gas hydrate are
significantly more widespread on the northern USAM
than could be determined based on the traditional analy-
sis of seismic amplitude imagery alone and that this tech-
nique could be extended to map SIGs in legacy seismic
data in this area or in other areas where gas hydrate is
known to be present, but BSRs are not widely mapped.
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