11,704 research outputs found

    The hairy–downy game revisited: an empirical test of the interspecific social dominance mimicry hypothesis

    Get PDF
    © 2018 The Association for the Study of Animal Behaviour. Understanding the emergence and persistence of convergent phenotypes is the subject of considerable debate. Species may converge on nearly identical phenotypes for a variety of reasons, including occupying similar environments, exhibiting similar foraging ecologies, and for signalling reasons such as mimicry. Interspecific social dominance mimicry (ISDM) is a hypothesis that states that socially subordinate species evolve a phenotype mimicking a dominant species so as to accrue resources and avoid aggression. A recently proposed test case for this phenomenon asserts that downy woodpeckers, Picoides pubescens, evolved mimetic plumage to avoid attacks from hairy woodpeckers, Picoides villosus. We examined this claim with a large behavioural data set collected by citizen scientists. We employed phylogenetic methods and simulations to test whether downy woodpeckers avoid aggression, and whether downy woodpeckers are more dominant than expected based on body mass. Contrary to the expectations of ISDM, we found that downy woodpeckers were markedly more often the target of hairy woodpecker attacks than expected based on their relative abundances. Our empirical data thus offers no support for the strict ISDM hypothesis as an explanation for downy–hairy woodpecker plumage convergence. However, downy woodpeckers are slightly more dominant than expected based on their body mass, albeit not significantly so. Our data therefore lend weight to previous suggestions that the benefits of mimicry potentially accrue from third-party species mistaking the mimic for the model, rather than the model mistaking the mimic for another model

    Relativistic X-ray Lines from the Inner Accretion Disks Around Black Holes

    Full text link
    Relativistic X-ray emission lines from the inner accretion disk around black holes are reviewed. Recent observations with the Chandra X-ray Observatory, X-ray Multi-Mirror Mission-Newton, and Suzaku are revealing these lines to be good probes of strong gravitational effects. A number of important observational and theoretical developments are highlighted, including evidence of black hole spin and effects such as gravitational light bending, the detection of relativistic lines in stellar-mass black holes, and evidence of orbital-timescale line flux variability. In addition, the robustness of the relativistic disk lines against absorption, scattering, and continuum effects is discussed. Finally, prospects for improved measures of black hole spin and understanding the spin history of supermassive black holes in the context of black hole-galaxy co-evolution are presented. The best data and most rigorous results strongly suggest that relativistic X-ray disk lines can drive future explorations of General Relativity and disk physics.Comment: 40 pages, includes color figures, to appear in ARAA, vol 45, in pres

    Surface functionalisation of nanodiamonds for human neural stem cell adhesion and proliferation.

    Get PDF
    Biological systems interact with nanostructured materials on a sub-cellular level. These interactions may govern cell behaviour and the precise control of a nanomaterial's structure and surface chemistry allow for a high degree of tunability to be achieved. Cells are surrounded by an extra-cellular matrix with nano-topographical properties. Diamond based materials, and specifically nanostructured diamond has attracted much attention due to its extreme electrical and mechanical properties, chemical inertness and biocompatibility. Here the interaction of nanodiamond monolayers with human Neural Stem Cells (hNSCs) has been investigated. The effect of altering surface functionalisation of nanodiamonds on hNSC adhesion and proliferation has shown that confluent cellular attachment occurs on oxygen terminated nanodiamonds (O-NDs), but not on hydrogen terminated nanodiamonds (H-NDs). Analysis of H and O-NDs by Atomic Force Microscopy, contact angle measurements and protein adsorption suggests that differences in topography, wettability, surface charge and protein adsorption of these surfaces may underlie the difference in cellular adhesion of hNSCs reported here

    Advances in nowcasting influenza-like illness rates using search query logs

    Get PDF
    User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012–13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance

    Litz wire loss performance and optimization for cryogenic windings

    Get PDF
    Litz wires operating in a cryogenic environment can potentially improve both the efficiency and power density of electrical machines and passive components. However, due to the low resistivity and high magnetic fields, eddy-current losses may become significant in cryogenically cooled windings, especially in airgap winding arrangements or in the case of significant slot leakage fields, unless the litz wire parameters are carefully chosen. A framework for litz wire loss performance optimization and experimental characterisation at cryogenic temperatures is provided. An optimum operating temperature for minimum loss is derived based on analytical expressions, which highlights the role of litz wire parameters, current density and external field. The proximity loss model, used to calculate the optimum operating temperature, is validated experimentally. Two test rigs with different magnetic cores were designed and built. Copper and aluminium litz wires with a strand diameter down to 0.1 mm were tested in a liquid nitrogen bath with a uniform harmonic external magnetic field up to 0.5 T peak and a frequency up to 1 kHz. Measurements show good agreement with the theoretical results and confirm that the proposed model can be confidently used during the preliminary design of cryogenic windings

    The imprints of AGN feedback within a supermassive black hole's sphere of influence

    Get PDF
    We present a new 300 ks Chandra observation of M87 that limits pileup to only a few per cent of photon events and maps the hot gas properties closer to the nucleus than has previously been possible. Within the supermassive black hole's gravitational sphere of influence, the hot gas is multiphase and spans temperatures from 0.2 to 1 keV. The radiative cooling time of the lowest temperature gas drops to only 0.1-0.5 Myr, which is comparable to its free fall time. Whilst the temperature structure is remarkably symmetric about the nucleus, the density gradient is steep in sectors to the N and S, with ρr1.5±0.1\rho{\propto}r^{-1.5\pm0.1}, and significantly shallower along the jet axis to the E, where ρr0.93±0.07\rho{\propto}r^{-0.93\pm0.07}. The density structure within the Bondi radius is therefore consistent with steady inflows perpendicular to the jet axis and an outflow directed E along the jet axis. By putting limits on the radial flow speed, we rule out Bondi accretion on the scale resolved at the Bondi radius. We show that deprojected spectra extracted within the Bondi radius can be equivalently fit with only a single cooling flow model, where gas cools from 1.5 keV down below 0.1 keV at a rate of 0.03 M_{\odot}/yr. For the alternative multi-temperature spectral fits, the emission measures for each temperature component are also consistent with a cooling flow model. The lowest temperature and most rapidly cooling gas in M87 is therefore located at the smallest radii at ~100 pc and may form a mini cooling flow. If this cooling gas has some angular momentum, it will feed into the cold gas disk around the nucleus, which has a radius of ~80 pc and therefore lies just inside the observed transition in the hot gas structure
    corecore