163 research outputs found

    VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway

    Get PDF
    BACKGROUND: Hypoxia-induced mitogenic factor (HIMF) is developmentally regulated and plays an important role in lung pathogenesis. We initially found that HIMF promotes vascular tubule formation in a matrigel plug model. In this study, we investigated the mechanisms which HIMF enhances expression of vascular endothelial growth factor (VEGF) in lung tissues and epithelial cells. METHODS: Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, VEGF expression was examined by immunohistochemical staining and Western blot. The promoter-luciferase reporter assay, RT-PCR, and Western blot were performed to examine the effects of HIMF on VEGF expression in mouse lung epithelial cell line MLE-12. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK and IκBα were examined by luciferase assay and Western blot, respectively. RESULTS: Intratracheal instillation of HIMF protein resulted in significant increase of VEGF, mainly localized to airway epithelial and alveolar type II cells. Deletion of NF-κB binding sites within VEGF promoter abolished HIMF-induced VEGF expression in MLE-12 cells, suggesting that activation of NF-κB is essential for VEGF upregulation induced by HIMF. Stimulation of lung epithelial cells by HIMF resulted in phosphorylation of IKK and IκBα, leading to activation of NF-κB. In addition, HIMF strongly induced Akt phosphorylation, and suppression of Akt activation by specific inhibitors and dominant negative mutants for PI-3K, and IKK or IκBα blocked HIMF-induced NF-κB activation and attenuated HIMF-induced VEGF production. CONCLUSION: These results suggest that HIMF enhances VEGF production in mouse lung epithelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis

    Participation of the PI-3K/Akt-NF-κB signaling pathways in hypoxia-induced mitogenic factor-stimulated Flk-1 expression in endothelial cells

    Get PDF
    BACKGROUND: Hypoxia-induced mitogenic factor (HIMF), a lung-specific growth factor, promotes vascular tubule formation in a matrigel plug model. We initially found that HIMF enhances vascular endothelial growth factor (VEGF) expression in lung epithelial cells. In present work, we tested whether HIMF modulates expression of fetal liver kinase-1 (Flk-1) in endothelial cells, and dissected the possible signaling pathways that link HIMF to Flk-1 upregulation. METHODS: Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, Flk-1 expression was examined by immunohistochemistry and Western blot. The promoter-luciferase reporter assay and real-time RT-PCR were performed to examine the effects of HIMF on Flk-1 expression in mouse endothelial cell line SVEC 4–10. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK, and IκBα were examined by luciferase assay and Western blot, respectively. RESULTS: Intratracheal instillation of HIMF protein resulted in a significant increase of Flk-1 production in lung tissues. Stimulation of SVEC 4–10 cells by HIMF resulted in increased phosphorylation of IKK and IκBα, leading to activation of NF-κB. Blocking NF-κB signaling pathway by dominant-negative mutants of IKK and IκBα suppressed HIMF-induced Flk-1 upregulation. Mutation or deletion of NF-κB binding site within Flk-1 promoter also abolished HIMF-induced Flk-1 expression in SVEC 4–10 cells. Furthermore, HIMF strongly induced phosphorylation of Akt. A dominant-negative mutant of PI-3K, Δp85, as well as PI-3K inhibitor LY294002, blocked HIMF-induced NF-κB activation and attenuated Flk-1 production. CONCLUSION: These results suggest that HIMF upregulates Flk-1 expression in endothelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis

    Co-expression of vascular endothelial growth factor (VEGF) and its receptors (flk-1 and flt-1) in hormone-induced mammary cancer in the Noble rat

    Get PDF
    Vascular endothelial growth factor (VEGF) is recognized to play a predominant role in breast cancer prognosis. The action of VEGF is mediated by two high-affinity receptors with ligand-stimulated tyrosine kinase activity: VEGFR-1/flt-1 and VEGFR-2/flk-1, which are expressed mainly in vascular endothelial cells. To the best of our knowledge, no previous studies on the expression of these receptors in breast cancer cells has been made. We have established a new animal model for breast cancer, using a combination of 17β-oestradiol and testosterone as ‘carcinogens’. Taking advantage of the animal model, we have demonstrated that mammary cancer cells expressed not only high levels of VEGF but also, surprisingly, its receptors (flt-1 and flk-1) in mammary cancer cells. Intense reactivities to VEGF, flt-1 and flk-1 were observed in mammary cancer cells, especially in invasive mammary carcinoma. Western blot analysis confirmed the increase in flk-1 and flt-1 proteins in induced mammary cancers. Based on these observations, we hypothesize that in mammary cancer, VEGF regulates, in addition to endothelial proliferation and angiogenesis, also growth of cancer cells by an autocrine mechanism mediated through its receptors. To further verify this hypothesis, we investigated the correlation between cellular proliferation and the expression of VEGF, flt-1 and flk-1. Using double-labelling immunocytochemistry, we have shown a correlation between high VEGF activity and Ki-67 expression. The Ki-67 indices in the areas of strong and weak VEGF reactivities were 58.3% and 3.7% respectively. Similarly, there was also a correlation of strong flk-1 and Ki-67 reactivity. The Ki-67 indices for areas of strong and weak flk-1 reactivities were 53.9% and 3.1% respectively. On the other hand, there was a reverse correlation between flt-1 and Ki-67 activities. These results indicate that overexpression of VEGF and flk-1 is correlated with high Ki-67 index. The data, therefore, suggest that VEGF may act as an autocrine growth factor for mammary cancer cells in vivo and this autocrine regulatory role may be mediated through flk-1. The present study is the first report showing that VEGF may act as a growth stimulator for mammary cancer cells. © 1999 Cancer Research Campaig

    Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer

    Get PDF
    Angiogenesis is critical for the growth and metastasis of endometrial cancer and is therefore an important therapeutic target. Vascular endothelial growth factor-A (VEGF-A) is a key molecule in angiogenesis, but the identification of related molecules and the angiopoietins suggests a more complex picture. We investigated the presence of transcripts for VEGF-A, VEGF-B, VEGF-C, VEGF-D, Angiopoietin-1 and Angiopoietin-2 in benign endometrium, atypical complex hyperplasia (ACH) and endometrioid endometrial carcinoma using in situ hybridisation. We confirmed the presence of VEGF-A mRNA in the epithelial cells of cancers examined (13 out of 13), but not in benign endometrium or ACH. We also demonstrate, using quantitative polymerase chain reaction, that levels of VEGF-B mRNA are significantly lower in endometrial cancer than benign endometrium. We conclude that loss of VEGF-B may contribute to the development of endometrial carcinoma by modulating availability of receptors for VEGF-A

    The place of VEGF inhibition in the current management of renal cell carcinoma

    Get PDF
    Vascular endothelial growth factor (VEGF) is overexpressed in around 80% of patients with clear cell carcinoma of the kidney owing to the inactivation of von Hippel Lindau gene activity. VEGF stimulates angiogenesis and acts as an autocrine growth factor. A number of different agents are now available which target VEGF and its signalling pathways. A significant body of evidence has accumulated demonstrating that antagonism of VEGF and its downstream pathways is clinically useful in a significant proportion of patients with metastatic clear cell carcinoma of the kidney. Enough data is now available to recommend that patients with metastatic clear cell carcinoma of the kidney should at some point during the course of their disease be offered entry into a clinical trial enabling exposure to a targeted inhibitor of VEGF or its signalling pathways. Assuming early clinical trial data is substantiated by ongoing registration studies, efforts should be made to minimise the time taken between licensing and general availability of these active agents

    Endostatin inhibits VEGF-A induced osteoclastic bone resorption in vitro

    Get PDF
    BACKGROUND: Endostatin is a C-terminal fragment of collagen XVIII which is a component of basement membranes with the structural properties of both collagens and proteoglycans. Endostatin has a major role in angiogenesis which is intimately associated with bone development and remodeling. Signaling between the endothelial cells and the bone cells, for example, may have a role in recruitment of osteoclastic precursor cells. Our study aims at exploring a possibility that endostatin, either as a part of basement membrane or as a soluble molecule, may control osteoclastogenesis and osteoclastic bone resorption in vitro. METHODS: Rat pit formation assay was employed in order to examine the effect of endostatin alone or in combination with vascular endothelial growth factor-A (VEGF-A) on bone resorption in vitro. Effect of these agents on osteoclast differentiation in vitro was also tested. Osteoclastogenesis and the number of osteoclasts were followed by tartrate resistant acid phosphatase (TRACP) staining and resorption was evaluated by measuring the area of excavated pits. RESULTS: Endostatin inhibited the VEGF-A stimulated osteoclastic bone resorption, whereas endostatin alone had no effect on the basal resorption level in the absence of VEGF-A. In addition, endostatin could inhibit osteoclast differentiation in vitro independent of VEGF-A. CONCLUSION: Our in vitro data indicate that collagen XVIII/endostatin can suppress VEGF-A induced osteoclastic bone resorption to the basal level. Osteoclastogenesis is also inhibited by endostatin. The regulatory effect of endostatin, however, is not critical since endostatin alone does not modify the basal bone resorption

    Molecular imaging of angiogenesis with SPECT

    Get PDF
    Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed
    • …
    corecore