57 research outputs found

    Sleep, depression and anxiety: an epidemiological perspective

    Get PDF
    Penninx, B.W.J.H. [Promotor]Hoogendijk, W.J.G. [Promotor]Vogelzangs, N. [Copromotor

    Chronic experimental myocardial infarction produces antinatriuresis by a renal nerve-dependent mechanism

    No full text
    The present study focused on the role of sympathetic renal nerve activity, in mediating congestive heart failure-induced sodium retention following experimental chronic myocardial infarction. Groups of male Wistar rats (240-260 g) were studied: sham-operated coronary ligation (CON3W, N = 11), coronary ligation and sham-operated renal denervation (INF3W, N = 19), 3 weeks of coronary ligation and sympathetic renal nerve denervation (INF3WDX, N = 6), sham-operated coronary ligation (N = 7), and 16 weeks of coronary ligation (INF16W, N = 7). An acute experimental protocol was used in which the volume overload (VO; 5% of body weight) was applied for 30 min after the equilibration period of continuous iv infusion of saline. Compared to control levels, VO produced an increase (P < 0.01, ANOVA) in urine flow rate (UFR; 570%) and urinary sodium excretion (USE; 1117%) in CON3W. VO induced a smaller increase (P < 0.01) in USE (684%) in INF3W. A similar response was also observed in INF16W. In INF3WDX, VO produced an immediate and large increase (P < 0.01) in UFR (547%) and USE (1211%). Similarly, in INF3W VO increased (P < 0.01) UFR (394%) and USE (894%). Compared with INF3W, VO induced a higher (P < 0.01) USE in INF3WDX, whose values were similar to those for CON3W. These results suggest that renal sympathetic activity may be involved in sodium retention induced by congestive heart failure. This premise is supported by the observation that in bilaterally renal denervated INF3WDX rats myocardial infarction was unable to reduce volume expansion-induced natriuresis. However, the mechanism involved in urinary volume regulation seems to be insensitive to the factors that alter natriuresis

    Differential effects of isoproterenol on the activity of angiotensin-converting enzyme in the rat heart and aorta

    No full text
    The excessive stimulation of beta-adrenergic receptors in the heart induces myocardial hypertrophy. There are several experimental data suggesting that this hypertrophy may also depend, at least partially, on the increase of local production of angiotensin II secondary to the activation of the cardiac renin-angiotensin system. In this study we investigated the effects of isoproterenol on the activity of angiotensin-converting enzyme (ACE) in the heart and also in the aorta and plasma. Male Wistar rats weighing 250 to 305 g were treated with a dose of (±)-isoproterenol (0.3 mg kg-1 day-1, N = 8) sufficient to produce cardiac hypertrophy without deleterious effects on the pumping capacity of the heart. Control rats (N = 7) were treated with vehicle (corn oil). The animals were killed one week later. ACE activity was determined in vitro in the four cardiac chambers, aorta and plasma by a fluorimetric assay. A significant hypertrophy was observed in both ventricular chambers. ACE activity in the atria remained constant after isoproterenol treatment. There was a significant increase (P&lt;0.05) of ACE activity in the right ventricle (6.9 ± 0.9 to 8.2 ± 0.6 nmol His-Leu g-1 min-1) and in the left ventricle (6.4 ± 1.1 to 8.9 ± 0.8 nmol His-Leu g-1 min-1). In the aorta, however, ACE activity decreased (P&lt;0.01) after isoproterenol (41 ± 3 to 27 ± 2 nmol His-Leu g-1 min-1) while it remained unchanged in the plasma. These data suggest that ACE expression in the heart can be increased by stimulation of beta-adrenoceptors. However, this effect is not observed on other local renin-angiotensin systems, such as the aorta. Our data also suggest that the increased sympathetic discharge and the elevated plasma concentration of catecholamines may contribute to the upregulation of ACE expression in the heart after myocardial infarction and heart failure

    Remodeling in the ischemic heart: the stepwise progression for heart

    No full text
    Abstract Coronary artery disease is the leading cause of death in the developed world and in developing countries. Acute mortality from acute myocardial infarction (MI) has decreased in the last decades. However, the incidence of heart failure (HF) in patients with healed infarcted areas is increasing. Therefore, HF prevention is a major challenge to the health system in order to reduce healthcare costs and to provide a better quality of life. Animal models of ischemia and infarction have been essential in providing precise information regarding cardiac remodeling. Several of these changes are maladaptive, and they progressively lead to ventricular dilatation and predispose to the development of arrhythmias, HF and death. These events depend on cell death due to necrosis and apoptosis and on activation of the inflammatory response soon after MI. Systemic and local neurohumoral activation has also been associated with maladaptive cardiac remodeling, predisposing to HF. In this review, we provide a timely description of the cardiovascular alterations that occur after MI at the cellular, neurohumoral and electrical level and discuss the repercussions of these alterations on electrical, mechanical and structural dysfunction of the heart. We also identify several areas where insufficient knowledge limits the adoption of better strategies to prevent HF development in chronically infarcted individuals

    Time course of changes in heart rate and blood pressure variability in rats with myocardial infarction

    No full text
    Our aim was to determine the time course of changes in autonomic balance in the acute (1 and 3 days), sub-acute (7 days) and chronic (28 days) phases of myocardial infarction (MI) in rats. Autonomic balance was assessed by temporal and spectral analyses of blood pressure variability (BPV) and heart rate variability (HRV). Pulsatile blood pressure (BP) recordings (30 min) were obtained in awake and unrestrained male Wistar rats (N = 77; 8-10 weeks old) with MI (coronary ligature) or sham operation (SO). Data are reported as means±SE. The high frequency (HF) component (n.u.) of HRV was significantly lower in MI-1- (P<0.01) and MI-3-day rats (P<0.05) than in their time-control groups (SO-1=68±4 vs MI-1=35.3±4.3; SO-3=71±5.8 vs MI-3=45.2±3.8), without differences thereafter (SO-7=69.2±4.8 vs MI-7=56±5.8; SO-28=73±4 vs MI-28=66±6.6). A sharp reduction (P<0.05) of BPV (mmHg2) was observed in the first week after MI (SO-1=8.55±0.80; SO-3=9.11±1.08; SO-7=7.92±1.10 vs MI-1=5.63±0.73; MI-3=5.93±0.30; MI-7=5.30±0.25). Normal BPV, however, was observed 4 weeks after MI (SO-28=8.60±0.66 vs MI-28=8.43±0.56 mmHg2; P>0.05). This reduction was mainly due to attenuation of the low frequency (LF) band of BPV in absolute and normalized units (SO-1=39.3±7%; SO-3=55±4.5%; SO-7=46.8±4.5%; SO-28=45.7±5%; MI-1=13±3.5%; MI-3=35±4.7%; MI-7=25±2.8%; MI-28=21.4±2.8%). The results suggest that the reduction in HRV was associated with decrease of the HF component of HRV suggesting recovery of the vagal control of heartbeats along the post-infarction healing period. The depression of BPV was more dependent on the attenuation of the LF component, which is linked to the baroreflex modulation of the autonomic balance
    corecore