29 research outputs found

    Microarrayed human bone marrow organoids for modeling blood stem cell dynamics

    Full text link
    In many leukemia patients, a poor prognosis is attributed either to the development of chemotherapy resistance by leukemic stem cells (LSCs) or to the inefficient engraftment of transplanted hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM). Here, we build a 3D in vitro model system of bone marrow organoids (BMOs) that recapitulate several structural and cellular components of native BM. These organoids are formed in a high-throughput manner from the aggregation of endothelial and mesenchymal cells within hydrogel microwells. Accordingly, the mesenchymal compartment shows partial maintenance of its self-renewal and multilineage potential, while endothelial cells self-organize into an interconnected vessel-like network. Intriguingly, such an endothelial compartment enhances the recruitment of HSPCs in a chemokine ligand/receptor-dependent manner, reminiscent of HSPC homing behavior in vivo. Additionally, we also model LSC migration and nesting in BMOs, thus highlighting the potential of this system as a well accessible and scalable preclinical model for candidate drug screening and patient-specific assays

    Quantification and Phenotypic Characterization of Extracellular Vesicles from Patients with Acute Myeloid and B-Cell Lymphoblastic Leukemia

    No full text
    Extracellular vesicles (EVs) act in cell-to-cell communication, delivering cargo from donor to recipient cells and modulating their physiological condition. EVs secreted by leukemic blasts in patients with leukemia have been shown to influence the fate of recipient cells in the bone marrow microenvironment. Methods to quantify and to characterize them phenotypically are therefore urgently needed to study their functional role in leukemia development and to evaluate their potential as targets for therapy. We have used cryo-electron microscopy to study morphology and size of leukemic EVs, and nanoparticle tracking analysis and fluorescence triggering flow cytometry to quantify EVs in platelet-free plasma from a small cohort of leukemia patients and healthy blood donors. Additional studies with a capture bead-based assay allowed us to establish phenotypic signatures of leukemic EVs from 17 AML and 3 B-ALL patients by evaluating the expression of 37 surface antigens. In addition to tetraspanins and lineage-specific markers we found several adhesion molecules (CD29, and CD146) to be highly expressed by EVs from B-ALL and several leukemic stem cell antigens (CD44, CD105, CD133, and SSEA-4) to be expressed by EVs from AML patients. Further improvements in analytical methods to study EVs are needed before potentially using them as biomarkers for leukemia prognosis and follow-up

    Functional analysis of evolutionarily-conserved regulatory genes involved in developmental plasticity and neurogenesis in Hydra

    No full text
    Au cours de ce projet j'ai utilisé l'hydre comme système modèle afin d'analyser la neurogénèse ainsi que les mécanismes développementaux qui sous-tendent l'activité d'organisatrice observée pendant les processus morphogénétiques. En effet, cet animal représente les espèces animales les plus ancestrales capables de différencier une polarité tête/pied et un système nerveux, formé de cellules méchano-réceptrices (nématocytes) et de neurones qui partagent une cellule souche commune. Nous avons identifié des gènes régulateurs dont la fonction neurogénétique est préservée au cours de l'évolution. Parmi ceux-ci "cnox-2" (homologue de "Gsx") est exprimé dans les cellules souches neuronales, les précurseurs des neurones et de nématocytes, de même que certains neurones apicaux. Quand "cnox-2" est inhibé par interférence ARN, la formation de la tête n'a pas lieu. Par ailleurs, l'analyse par transgénèse des séquences régulatrices de "cnox-2" nous a montré que "cnox-2" était déréprimés au cours de la formation de la tête

    Neuronal evolution: analysis of regulatory genes in a first-evolved nervous system, the hydra nervous system

    No full text
    Cnidarians represent the first animal phylum with an organized nervous system and a complex active behavior. The hydra nervous system is formed of sensory-motoneurons, ganglia neurons and mechanoreceptor cells named nematocytes, which all differentiate from a common stem cell. The neurons are organized as a nerve net and a subset of neurons participate in a more complex structure, the nerve ring that was identified in most cnidarian species at the base of the tentacles. In order to better understand the genetic control of this neuronal network, we analysed the expression of evolutionarily conserved regulatory genes in the hydra nervous system. The Prd-class homeogene prdl-b and the nuclear orphan receptor hyCOUP-TF are expressed at strong levels in proliferating nematoblasts, a lineage where they were found repressed during patterning and morphogenesis, and at low levels in distinct subsets of neurons. Interestingly, Prd-class homeobox and COUP-TF genes are also expressed during neurogenesis in bilaterians, suggesting that mechanoreceptor and neuronal cells derive from a common ancestral cell. Moreover, the Prd-class homeobox gene prdl-a, the Antp-class homeobox gene msh, and the thrombospondin-related gene TSP1, which are expressed in distinct subset of neurons in the adult polyp, are also expressed during early budding and/or head regeneration. These data strengthen the fact that two distinct regulations, one for neurogenesis and another for patterning, already apply to these regulatory genes, a feature also identified in bilaterian related genes

    Hydra, a niche for cell and developmental plasticity

    No full text
    The silencing of genes whose expression is restricted to specific cell types and/or specific regeneration stages opens avenues to decipher the molecular control of the cellular plasticity underlying head regeneration in hydra. In this review, we highlight recent studies that identified genes involved in the immediate cytoprotective function played by gland cells after amputation; the early dedifferentiation of digestive cells into blastema-like cells during head regeneration, and the early late proliferation of neuronal progenitors required for head patterning. Hence, developmental plasticity in hydra relies on spatially restricted and timely orchestrated cellular modifications, where the functions played by stem cells remain to be characterized

    Head regeneration in wild-type hydra requires de novo neurogenesis

    No full text
    Because head regeneration occurs in nerve-free hydra mutants, neurogenesis was regarded as dispensable for this process. Here, in wild-type hydra, we tested the function of the ParaHox gsx homolog gene, cnox-2, which is a specific marker for bipotent neuronal progenitors, expressed in cycling interstitial cells that give rise to apical neurons and gastric nematoblasts (i.e. sensory mechanoreceptor precursors). cnox-2 RNAi silencing leads to a dramatic downregulation of hyZic, prdl-a, gsc and cnASH, whereas hyCOUP-TF is upregulated. cnox-2 indeed acts as an upstream regulator of the neuronal and nematocyte differentiation pathways, as cnox-2(-) hydra display a drastic reduction in apical neurons and gastric nematoblasts, a disorganized apical nervous system and a decreased body size. During head regeneration, the locally restricted de novo neurogenesis that precedes head formation is cnox-2 dependent: cnox-2 expression is induced in neuronal precursors and differentiating neurons that appear in the regenerating tip; cnox-2 RNAi silencing reduces this de novo neurogenesis and delays head formation. Similarly, the disappearance of cnox-2(+) cells in sf-1 mutants also correlates with head regeneration blockade. Hence in wild-type hydra, head regeneration requires the cnox-2 neurogenic function. When neurogenesis is missing, an alternative, slower and less efficient, head developmental program is possibly activated

    RNAi gene silencing affects cell and developmental plasticity in hydra

    Get PDF
    The recent establishment of gene silencing through RNA interference upon feeding opens avenues to decipher the genetic control of regeneration in hydra. Following that approach, we identified three main stages for head regeneration. Immediately post-amputation, the serine protease inhibitor Kazal1 gene produced by the gland cells prevents from an excessive autophagy in regenerating tips. This cytoprotective function, or self-preservation, is similar to that played by Kazal-type proteins in the mammalian exocrine pancreas, in homeostatic or post-injury conditions, likely reflecting an evolutionarily conserved mechanism linking cell survival to tissue repair. Indeed, in wild-type hydra, within the first hours following mid-gastric section, an extensive cellular remodelling is taking place, including phenotypic cellular transitions and cell proliferation. The activation of the MAPK pathway, which leads to the RSK-dependent CREB phosphorylation, is required for these early cellular events. Later, at the early-late stage, the expression of the Gsx/cnox-2 ParaHox gene in proliferating apical neuronal progenitors is required for the de novo neurogenesis that precedes the emergence of the tentacle rudiments. Hence, head regeneration in wild-type hydra relies on spatially restricted and timely orchestrated cellular modifications, which display similarities with those reported during vertebrate epimorphic regeneration. These results suggest some conservation across evolution of the mechanisms driving the post-amputation reactivation of developmental programs

    from cnidarians

    No full text
    The orphan COUP-TF nuclear receptors are markers for neurogenesi

    Sushi repeat protein X-linked 2, a novel mediator of angiogenesis

    No full text
    On appropriate stimuli, quiescent endothelial cells start to proliferate and form de novo blood vessels through angiogenesis. To further define molecular mechanisms accompanying the activation of endothelial cells during angiogenesis, we identified genes that were differentially regulated during this process using microarray analyses. In this work, we established a regulatory role for Sushi repeat protein X-linked 2 (Srpx2) in endothelial cell remodeling during angiogenesis. In particular, silencing of Srpx2 using small interfering RNAs (siRNAs) specifically attenuated endothelial cell migration and delayed angiogenic sprout formation. In vivo, Srpx2 expression was detected in de novo formation of blood vessels in angiogenic tissues by in situ mRNA hybridization and immunostaining. Pulldown experiments identified Srpx2 as a ligand for vascular uPAR, a key molecule involved in invasive migration of angiogenic endothelium. Immunostaining revealed coexpression of the Srpx2 and uPAR on vascular endothelium. These findings suggest that Srpx2 regulates endothelial cell migration and tube formation and provides a new target for modulating angiogenesis
    corecore