18 research outputs found

    A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture

    Get PDF
    Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections

    Reduction in Pathogenic Biofilms by the Photoactive Composite of Bacterial Cellulose and Nanochitosan Dots under Blue and Green Light

    Get PDF
    In this study, nanochitosan dots (ChiDs) were synthesized using gamma rays and encapsulated in bacterial cellulose (BC) polymer matrix for antibiofilm potential in photodynamic therapy. The composites were analyzed for structural changes using SEM, AFM, FTIR, XRD, EPR, and porosity measurements. Additionally, ChiD release was assessed. The results showed that the chemical composition remained unaltered, but ChiD agglomerates embedded in BC changed shape (1.5ā€“2.5 Āµm). Bacterial cellulose fibers became deformed and interconnected, with increased surface roughness and porosity and decreased crystallinity. No singlet oxygen formation was observed, and the total amount of released ChiD was up to 16.10%. Antibiofilm activity was higher under green light, with reductions ranging from 48 to 57% under blue light and 78 to 85% under green light. Methicillin-resistant Staphylococcus aureus was the most sensitive strain. The new photoactive composite hydrogels show promising potential for combating biofilm-related infections

    A comparative antimicrobial and toxicological study of gold(III) and silver(I) complexes with aromatic nitrogen-containing heterocycles: synergistic activity and improved selectivity index of Au(III)/Ag(I) complexes mixture

    Get PDF
    Five aromatic nitrogen-containing heterocycles, pyridazine (pydz, 1), pyrimidine (pm, 2), pyrazine (pz, 3), quinoxaline (qx, 4) and phenazine (phz, 5) have been used for the synthesis of gold(III) and silver(I) complexes. In contrast to the mononuclear Au1-5 complexes all having square-planar geometry, the corresponding Ag1-5 complexes have been found to be polynuclear and of different geometries. Complexes Au1-5 and Ag1-5, along with K[AuCl4], AgNO3 and N-heterocyclic ligands used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. All tested complexes exhibited excellent to good antibacterial activity with minimal inhibitory (MIC) values in the range of 2.5 to 100 mu g mL(-1) against the investigated strains. The complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC = 2.5-30 mu g mL(-1)) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. Moreover, the Au1-4 and Ag1-5 complexes exhibited pronounced ability to competitively intercalate double stranded genomic DNA of P. aeruginosa, which was demonstrated by gel electrophoresis techniques and supported by molecular docking into the DNA major groove. Antiproliferative effect on the normal human lung fibroblast cell line MRC5 has also been evaluated in order to determine therapeutic potential of Au1-5 and Ag1-5 complexes. Since the investigated gold(III) complexes showed much lower negative effects on the viability of the MRC5 cell line than their silver(I) analogues and slightly lower antimicrobial activity against the investigated strains, the combination approach to improve their pharmacological profiles was applied. Synergistic antimicrobial effect and the selectivity index of 10 were achieved for the selected gold(III)/silver(I) complexes mixtures, as well as higher P. aeruginosa PAO1 biofilm disruption activity, and improved toxicity profile towards zebrafish embryos, in comparison to the single complexes. To the best of our knowledge, this is the first report on synergistic activity of gold(III)/silver(I) complexes mixtures and it could have an impact on development of new combination therapy methods for the treatment of multi-resistant bacterial infections.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3334

    Sol-gel as a Method to Tailor the Magnetic Properties of Co1+yAl2-yO4

    Get PDF
    The magnetic properties of mesoscopic materials are modified by size and surface effects. We present a sol-gel method used to tailor these effects, and illustrate it on Co1+yAl2-yO4 spinel. Nanocomposites made of spinel oxide Co1+yAl2-yO4 particles dispersed in an amorphous SiO2 matrix were synthesized. Samples with various mass fractions -x of Co1+yAl2-yO4 in composite, ranging from predominantly SiO2 (x = 10 wt%) to predominantly spinel (x = 95 wt%), and with various Co concentrations in spinel y were studied. The spinel grain sizes were below 100 nm with a large size distribution, for samples with predominant spinel phase. Those samples showed Curie-Weiss paramagnetic behavior with antiferromagnetically interacting Co ions (theta approximate to -100 K). The grain sizes of spinel stays confined in 100 nm range even in the spinel samples diluted with as low as 5 wt% concentration of amorphous SiO2. For the samples with predominant SiO2 the crystalline nanoparticles are well separated and of size of around 100 nm, but with presence of much smaller spinel nanoparticles of about 10 nm. The magnetic properties of the samples with predominant silica phase showed complex behavior, spin-glass magnetic freezing at the lowest temperatures and lower absolute value of theta and consequently lower exchange constant

    Highly Efficient Antibacterial Polymer Composites Based on Hydrophobic Riboflavin Carbon Polymerized Dots

    Get PDF
    Development of new types of antimicrobial coatings is of utmost importance due to increasing problems with pathogen transmission from various infectious surfaces to human beings. In this study, new types of highly potent antimicrobial polyurethane composite films encapsulated by hydrophobic riboflavin-based carbon polymer dots are presented. Detailed structural, optical, antimicrobial, and cytotoxic investigations of these composites were conducted. Low-power blue light triggered the composites to eradicate Escherichia coli in 30 min, whereas the same effect toward Staphylococcus aureus was reached after 60 min. These composites also show low toxicity against MRC-5 cells. In this way, RF-CPD composites can be used for sterilization of highly touched objects in the healthcare industry

    Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids

    Get PDF
    Curcumin and its derivates are well-known for their different biological activities including antibacterial. On the other hand there are controversial reports concerning the antibacterial potential of graphene and, in particular, graphene oxide. In this study we have reported for the first time the antibacterial activity of curcumin/graphene nanomesh hybrids under ambient light conditions. The graphene nanomesh was synthesized by electrochemical exfoliation of highly oriented pyrolytic graphite in 1 M solution of ammonium persulfate and further functionalized by curcumin. Identical values of minimum inhibitory concentration (1 mg mL(-1)) were determined for pure curcumin and curcumin/graphene nanomesh hybrids toward Staphylococcus aureus. All tested samples had more pronounced antibacterial activity against Gram positive bacteria, Staphylococcus aureus compared to Escherichia coli as a representative of Gram negative strains. The poor antibacterial potential of exfoliated graphene improves significantly by the functionalization with curcumin, which allows for its usage as a antibacterial coating

    Zn-Mn-O: Ferromagnet at room temperature

    Get PDF
    Semiconductor Zn-Mn-O crystallites were synthesized by a solid state reaction method starting from the thermal decomposition of the appropriate oxalates. Samples were thermally treated in air at temperatures ranging from 400 to 900Ā°C. The nominal concentrations of manganese werex = 0.01, 0.02, 0.04 and 0.10. The samples were investigated by the X-ray powder diffraction method, magnetization measurements and by electron paramagnetic resonance. X-ray diffractgrams show a dominant wurtzite structure of Zn-Mn-O. Room temperature ferromagnetism was observed in Zn-Mn-O samples with manganese concentrations x ā‰¤ 0.04, thermally treated at low temperature (500Ā°C). The saturation magnetizaĀ­tion for the sample with x = 0.01 was 0.05 Ī¼B/Mn. The room temperature ferromagnetism seems to be due to the diffusion of Zn into the Mn-oxides grains

    Optical and magnetic properties of Hg1-xMnxSe alloys

    No full text
    In this paper we used X-ray, far-infrared reflectivity and electron paramagnetic resonance measurements to investigate the optical and magnetic properties of Hg1-xMnxSe (x LT = 0.26) alloys. Also, we used different models to describe magnetic and phonon structure.Current Research in Advanced Materials and Processes, 6th Conference of the Yugoslav-Materials-Research-Society, Sep 13-17, 2004, Herceg Novi, Montenegr
    corecore