436 research outputs found

    The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    Get PDF
    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blastwave on timescales of days to years after core-collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model which only includes steady mass loss, a model with enhanced mass loss over a period of \sim 5000 years prior to core-collapse, and a model with extreme mass loss over a period of \sim 500 years prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core-collapse.Comment: 18 pages, 11 figures; submitted to the Astrophysical Journa

    A decade of ejecta dust formation in the Type IIn SN 2005ip

    Get PDF
    In order to understand the contribution of core-collapse supernovae to the dust budget of the early universe, it is important to understand not only the mass of dust that can form in core-collapse supernovae but also the location and rate of dust formation. SN 2005ip is of particular interest since dust has been inferred to have formed in both the ejecta and the post-shock region behind the radiative reverse shock. We have collated eight optical archival spectra that span the lifetime of SN 2005ip and we additionally present a new X-shooter optical-near-IR spectrum of SN 2005ip at 4075d post-discovery. Using the Monte Carlo line transfer code DAMOCLES, we have modelled the blueshifted broad and intermediate width Hα\alpha, Hβ\beta and He I lines from 48d to 4075d post-discovery using an ejecta dust model. We find that dust in the ejecta can account for the asymmetries observed in the broad and intermediate width Hα\alpha, Hβ\beta and He I line profiles at all epochs and that it is not necessary to invoke post-shock dust formation to explain the blueshifting observed in the intermediate width post-shock lines. Using a Bayesian approach, we have determined the evolution of the ejecta dust mass in SN 2005ip over 10 years presuming an ejecta dust model, with an increasing dust mass from ~108^{-8} M_{\odot} at 48d to a current dust mass of \sim0.1 M_{\odot}.Comment: Accepted by MNRAS, 17 pages, 11 figures. Author accepted manuscript. Accepted on 04/03/19. Deposited on 07/03/1

    Dust in the wind: the role of recent mass loss in long gamma-ray bursts

    Full text link
    We study the late-time (t>0.5 days) X-ray afterglows of nearby (z<0.5) long Gamma-Ray Bursts (GRB) with Swift and identify a population of explosions with slowly decaying, super-soft (photon index Gamma_x>3) X-ray emission that is inconsistent with forward shock synchrotron radiation associated with the afterglow. These explosions also show larger-than-average intrinsic absorption (NH_x,i >6d21 cm-2) and prompt gamma-ray emission with extremely long duration (T_90>1000 s). Chance association of these three rare properties (i.e. large NH_x,i, super-soft Gamma_x and extreme duration) in the same class of explosions is statistically unlikely. We associate these properties with the turbulent mass-loss history of the progenitor star that enriched and shaped the circum-burst medium. We identify a natural connection between NH_x,i Gamma_x and T_90 in these sources by suggesting that the late-time super-soft X-rays originate from radiation reprocessed by material lost to the environment by the stellar progenitor before exploding, (either in the form of a dust echo or as reprocessed radiation from a long-lived GRB remnant), and that the interaction of the explosion's shock/jet with the complex medium is the source of the extremely long prompt emission. However, current observations do not allow us to exclude the possibility that super-soft X-ray emitters originate from peculiar stellar progenitors with large radii that only form in very dusty environments.Comment: 6 pages, Submitted to Ap

    Synthetic red supergiant explosion model grid for systematic characterization of Type II supernovae

    Full text link
    A new model grid containing 228,016 synthetic red supergiant explosions (Type II supernovae) is introduced. Time evolution of spectral energy distributions from 1 A to 50,000 A (100 frequency bins in a log scale) is computed at each time step up to 500 days after explosion in each model. We provide light curves for the filters of the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST), Zwicky Transient Facility (ZTF), Sloan Digital Sky Servey (SDSS), and the Neil Gehrels Swift Observatory, but light curves for any photometric filters can be constructed by convolving any filter response functions to the synthetic spectral energy distributions. We also provide bolometric light curves and photosphere information such as photospheric velocity evolution. The parameter space covered by the model grid is five progenitor masses (10, 12, 14, 16, and 18 Msun at the zero-age main sequence, solar metallicity), ten explosion energies (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 x 10^51 erg), nine 56Ni masses (0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, and 0.3 Msun), nine mass-loss rates (1e-5.0, 1e-4.5, 1e-4.0, 1e-3.5, 1e-3.0, 1e-2.5, 1e-2.0, 1e-1.5, and 1e-1.0 Msun/yr with a wind velocity of 10 km/s), six circumstellar matter radii (1, 2, 4, 6, 8, and 10 x 10^14 cm), and ten circumstellar structures (beta = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0). 56Ni is assumed to be uniformly mixed up to the half mass of a hydrogen-rich envelope. This model grid can be a base for rapid characterizations of Type II supernovae with sparse photometric sampling expected in LSST through a Bayesian approach, for example. The model grid is available at https://doi.org/10.5061/dryad.pnvx0k6sj.Comment: 15 pages, 10 figures, 2 tables, data available at https://doi.org/10.5061/dryad.pnvx0k6s

    Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN\,2012ap

    Full text link
    Deep late-time X-ray observations of the relativistic, engine-driven, type Ic SN2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic SNe. We find that on a local scale of ~0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate <5x10^-6 Msun yr-1 in line with GRBs and the other relativistic SN2009bb. Like sub-energetic GRBs, SN2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late time (t~20 days) X-ray emission is ~100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to breakout. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.Comment: Version accepted to ApJ. Significantly broadened discussio
    corecore