38 research outputs found

    Development and characterization of co-loaded curcumin/triazole-halloysite systems and evaluation of their potential anticancer activity.

    Get PDF
    Positively charged halloysite nanotubes functionalized with triazolium salts (f-HNT) were employed as a carrier for curcumin molecules delivery. The synthesis of these f-HNT new materials is described. Their interaction with curcumin was evaluated by means Dynamic Light Scattering (DLS) and UV-vis spectroscopy in comparison with pristine unmodified HNT (p-HNT). The curcumin load into HNT was estimated by Thermogravimetric Analysis (TGA) measurements, while the morphology was investigated by Scanning Electron Microscopy (SEM) techniques. Release of curcumin from f-HNT, at three different pH values, by means of UV-vis spectroscopy was also studied. Furthermore, different cancer cell lines were used to evaluate the potential cytotoxic effect of HNT at different concentrations and culture times. The results indicated that the f-HNT drug carrier system improves the solubility of curcumin in water, and that the drug-loaded f-HNT exerted cytotoxic effects against different cell lines

    Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGF beta 1 and PGC-1 alpha were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3: BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments

    Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells

    Get PDF
    Multicavity halloysite nanotube materials were employed as simultaneous carriers for two different natural drugs, silibinin and quercetin, at 6.1% and 2.2% drug loadings, respectively. The materials were obtained by grafting functionalized amphiphilic cyclodextrin onto the HNT external surface. The new materials were characterized by FT-IR spectroscopy, SEM, thermogravimetry, turbidimetry, dynamic light scattering and ζ-potential techniques. The interaction of the two molecules with the carrier was studied by HPLC measurements and fluorescence spectroscopy, respectively. The release of the drugs from HNT-amphiphilic cyclodextrin, at two different pH values, was also investigated by means of UV-vis spectroscopy. Biological assays showed that the new complex exhibits anti-proliferative activity against human anaplastic thyroid cancer cell lines 8505C. Furthermore, fluorescence microscopy was used to evaluate whether the carrier was uptaken into 8505C thyroid cancer cell lines. The successful results revealed that the synthesized multicavity system is a material of suitable size to transport drugs into living cells

    Beta-agonist stimulation ameliorates the phenotype of spinal and bulbar muscular atrophy mice and patient-derived myotubes

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease characterized by the loss of lower motor neurons. SBMA is caused by expansions of a polyglutamine tract in the gene coding for androgen receptor (AR). Expression of polyglutamine-expanded AR causes damage to motor neurons and skeletal muscle cells. Here we investigated the effect of β-agonist stimulation in SBMA myotube cells derived from mice and patients, and in knock-in mice. We show that treatment of myotubes expressing polyglutamine-expanded AR with the β-agonist clenbuterol increases their size. Clenbuterol activated the phosphatidylinositol-3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway and decreased the accumulation of polyglutamine-expanded AR. Treatment of SBMA knock-in mice with clenbuterol, which was started at disease onset, ameliorated motor function and extended survival. Clenbuterol improved muscle pathology, attenuated the glycolytic-to-oxidative metabolic alterations occurring in SBMA muscles and induced hypertrophy of both glycolytic and oxidative fibers. These results indicate that β-agonist stimulation is a novel therapeutic strategy for SBMA

    Materiali ibridi a base di nanotubi di allosite per la rimozione d’inquinanti

    Get PDF
    L’allosite (HNT) è un interessante materiale argilloso allumino-silicato naturale, non tossico e biocompatibile, con la caratteristica forma tubolare cava dotata di parziale carica positiva interna e negativa esterna.Combinando le peculiarità di un composto organico con le proprietà di un materiale inorganico, è possibile ottenere sistemi ibridi organici–inorganici con interessanti proprietà e vasti campi di applicazione. Sono un esempio delle “nanospugne” capaci di adsorbire efficacemente potenziali inquinanti. In questo contesto sono stati preparati, dei materiali ibridi “spugna” costituiti da unità ciclodestriniche e allosite e ancora un sistema ibrido HNT-Cucurbit[8]uril. Il primo possiede una struttura altamente ramificata e mostra interessanti capacità di assorbimento di coloranti organici con proprietà modulabili in funzione di pH e temperatura, il secondo è stato dimostrato possedere una spiccata attività di adsorbimento di toluene e pirene

    Transcriptome-wide RNA binding analysis of C9orf72 poly(PR) dipeptides

    Get PDF
    An intronic GGGGCC repeat expansion in C9orf72 is a common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeats are transcribed in both sense and antisense directions to generate distinct dipeptide repeat proteins, of which poly(GA), poly(GR), and poly(PR) have been implicated in contributing to neurodegeneration. Poly(PR) binding to RNA may contribute to toxicity, but analysis of poly(PR)-RNA binding on a transcriptome-wide scale has not yet been carried out. We therefore performed crosslinking and immunoprecipitation (CLIP) analysis in human cells to identify the RNA binding sites of poly(PR). We found that poly(PR) binds to nearly 600 RNAs, with the sequence GAAGA enriched at the binding sites. In vitro experiments showed that poly(GAAGA) RNA binds poly(PR) with higher affinity than control RNA and induces the phase separation of poly(PR) into condensates. These data indicate that poly(PR) preferentially binds to poly(GAAGA)-containing RNAs, which may have physiological consequences

    Transcriptome-wide RNA binding analysis of C9orf72 poly(PR) dipeptides

    Get PDF
    An intronic GGGGCC repeat expansion in C9orf72 is a common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeats are transcribed in both sense and antisense directions to generate distinct dipeptide repeat proteins, of which poly(GA), poly(GR), and poly(PR) have been implicated in contributing to neurodegeneration. Poly(PR) binding to RNA may contribute to toxicity, but analysis of poly(PR)-RNA binding on a transcriptome-wide scale has not yet been carried out. We therefore performed crosslinking and immunoprecipitation (CLIP) analysis in human cells to identify the RNA binding sites of poly(PR). We found that poly(PR) binds to nearly 600 RNAs, with the sequence GAAGA enriched at the binding sites. In vitro experiments showed that poly(GAAGA) RNA binds poly(PR) with higher affinity than control RNA and induces the phase separation of poly(PR) into condensates. These data indicate that poly(PR) preferentially binds to poly(GAAGA)-containing RNAs, which may have physiological consequences.The authors thank Michael Howell and the High-Throughput Screening Platform at the Francis Crick Institute for valuable assistance. R Balendra is NIHR Academic Clinical Lecturer in Neurology at UCL and has received funding from a Wellcome Trust Research Training Fellowship [107196/Z/14/ Z] and the UCL Leonard Wolfson Experimental Neurology Centre for this work. She was funded by an Academy of Medical Sciences Starter Grant for Clinical Lecturers (SGL027\1022). This work was funded by the Motor Neurone Disease Association (to AM Isaacs), Alzheimer’s Research UK (ARUK-PG2016A6; ARUK-EXT2019A-002) (to AM Isaacs), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (648716—C9ND) (to AM Isaacs), and the UK Dementia Research Institute (to AM Isaacs), which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society, and Alzheimer’s Research UK. HM Odeh was supported by an AstraZeneca post-doctoral fellowship and an Alzheimer’s Association Research Fellowship. J Shorter was supported by ALSA, Target ALS, AFTD, and the Packard Foundation for ALS Research at JHU

    PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons

    Get PDF
    Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.</p
    corecore