363 research outputs found

    Multi-Temporal InSAR Structural Damage Assessment: The London Crossrail Case Study

    Get PDF
    Spaceborne multi-temporal interferometric synthetic aperture radar (MT-InSAR) is a monitoring technique capable of extracting line of sight (LOS) cumulative surface displacement measurements with millimeter accuracy. Several improvements in the techniques and datasets quality lead to more effective, near real time assessment and response, and a greater ability of constraining dynamically changing physical processes. Using examples of the COSMO-SkyMed (CSK) system, we present a methodology that bridges the gaps between MT-InSAR and the relative stiffness method for tunnel-induced subsidence damage assessment. The results allow quantification of the effect of the building on the settlement profile. As expected the greenfield deformation assessment tends to provide a conservative estimate in the majority of cases (~ 71% of the analyzed buildings), overestimating tensile strains up to 50%. With this work we show how these two techniques in the field of remote sensing and structural engineering can be synergistically used to complement and replace the traditional ground based analysis by providing an extended coverage and a temporally dense set of data

    Neural Network Pattern Recognition Experiments Toward a Fully Automatic Detection of Anomalies in InSAR Time Series of Surface Deformation

    Get PDF
    We present a neural network-based method to detect anomalies in time-dependent surface deformation fields given a set of geodetic images of displacements collected from multiple viewing geometries. The presented methodology is based on a supervised classification approach using combinations of line of sight multitemporal, multi-geometry interferometric synthetic aperture radar (InSAR) time series of displacements. We demonstrate this method with a set of 170 million time series of surface deformation generated for the entire Italian territory and derived from ERS, ENVISAT, and COSMO-SkyMed Synthetic Aperture Radar satellite constellations. We create a training dataset that has been compared with independently validated data and current state-of-the-art classification techniques. Compared to state-of-the-art algorithms, the presented framework provides increased detection accuracy, precision, recall, and reduced processing times for critical infrastructure and landslide monitoring. This study highlights how the proposed approach can accelerate the anomalous points identification step by up to 147 times compared to analytical and other artificial intelligence methods and can be theoretically extended to other geodetic measurements such as GPS, leveling data, or extensometers. Our results indicate that the proposed approach would make the anomaly identification post-processing times negligible when compared to the InSAR time-series processing

    The collapse of BĂĄrĂ°arbunga Caldera, Iceland

    Get PDF
    Lying below Vatnajökull ice cap in Iceland, BĂĄrĂ°arbunga stratovolcano began experiencing wholesale caldera collapse in 2014 August 16, one of the largest such events recorded in the modern instrumental era. Simultaneous with this collapse is the initiation of a plate boundary rifting episode north of the caldera. Observations using the international constellation of radar satellites indicate rapid 50 cm d^(−1) subsidence of the glacier surface overlying the collapsing caldera and metre-scale crustal deformation in the active rift zone. Anomalous earthquakes around the rim of the caldera with highly nondouble-couple focal mechanisms provide a mechanical link to the dynamics of the collapsing magma chamber. A model of the collapse consistent with available geodetic and seismic observations suggests that the majority of the observed subsidence occurs aseismically via a deflating sill-like magma chamber

    Combining remote sensing techniques and field surveys for post‑earthquake reconnaissance missions

    Get PDF
    Remote reconnaissance missions are promising solutions for the assessment of earthquake induced structural damage and cascading geological hazards. Space-borne remote sensing can complement in-field missions when safety and accessibility concerns limit post-earthquake operations on the ground. However, the implementation of remote sensing techniques in post-disaster missions is limited by the lack of methods that combine different techniques and integrate them with field survey data. This paper presents a new approach for rapid post-earthquake building damage assessment and landslide mapping, based on Synthetic Aperture Radar (SAR) data. The proposed texture-based building damage classification approach exploits very high resolution post-earthquake SAR data integrated with building survey data. For landslide mapping, a backscatter intensity-based landslide detection approach, which also includes the separation between landslides and flooded areas, is combined with optical-based manual inventories. The approach was implemented during the joint Structural Extreme Event Reconnaissance, GeoHazards International and Earthquake Engineering Field Investigation Team mission that followed the 2021 Haiti Earthquake and Tropical Cyclone Grace

    Geodetic Constraints on the 2014 M 6.0 South Napa Earthquake

    Get PDF
    On 24 August 2014, the M 6.0 South Napa earthquake shook much of the San Francisco Bay area, leading to significant damage in the Napa Valley. The earthquake occurred in the vicinity of the West Napa fault (122.313° W, 38.22° N, 11.3 km), a mapped structure located between the Rodger’s Creek and Green Valley faults, with nearly pure right‐lateral strike‐slip motion (strike 157°, dip 77°, rake –169°; http://comcat.cr.usgs.gov/earthquakes/eventpage/nc72282711#summary, last accessed December 2014) (Fig. 1). The West Napa fault previously experienced an M 5 strike‐slip event in 2000 but otherwise exhibited no previous definitive evidence of historic earthquake rupture (Rodgers et al., 2008; Wesling and Hanson, 2008). Evans et al. (2012) found slip rates of ∌9.5  mm/yr along the West Napa fault, with most slip rate models for the Bay area placing higher slip rates and greater earthquake potential on the Rodger’s Creek and Green Valley faults, respectively (e.g., Savage et al., 1999; d’Alessio et al., 2005; Funning et al., 2007)

    Low energy high angular resolution neutral atom detection by means of micro-shuttering techniques: the BepiColombo SERENA/ELENA sensor

    Full text link
    The neutral sensor ELENA (Emitted Low-Energy Neutral Atoms) for the ESA cornerstone BepiColombo mission to Mercury (in the SERENA instrument package) is a new kind of low energetic neutral atoms instrument, mostly devoted to sputtering emission from planetary surfaces, from E ~20 eV up to E~5 keV, within 1-D (2x76 deg). ELENA is a Time-of-Flight (TOF) system, based on oscillating shutter (operated at frequencies up to a 100 kHz) and mechanical gratings: the incoming neutral particles directly impinge upon the entrance with a definite timing (START) and arrive to a STOP detector after a flight path. After a brief dissertation on the achievable scientific objectives, this paper describes the instrument, with the new design techniques approached for the neutral particles identification and the nano-techniques used for designing and manufacturing the nano-structure shuttering core of the ELENA sensor. The expected count-rates, based on the Hermean environment features, are shortly presented and discussed. Such design technologies could be fruitfully exported to different applications for planetary exploration.Comment: 11 page

    Bioptic prostatic inflammation correlates with false positive rates of multiparametric magnetic resonance imaging in detecting clinically significant prostate cancer

    Get PDF
    ntroduction: The aim of this article was to determine the impact of bioptic prostatic inflammation (PI) on the false positive rate of multiparametric magnetic resonance imaging (mp-MRI) in detecting clinically significant prostate ancer (csPCa). Material and methods: Our prostate biopsy database was queried to identify patients who underwent mp-MRI before PB at our institution. A dedicated uropathologist prospectively assessed bioptic PI using the Irani scores. We evaluated the association between mp-MRI findings, bioptic Gleason grade (GG) and aggressiveness of PI, and PCa detection. Results: In total, 366 men were included. In patients with Prostate Imaging Reporting and Data System (PIRADS) 4-5 lesions, the csPCa (GG ≄2) rate was significantly higher in those with low-grade than in those with high-grade PI (36% vs 29.7%; p = 0.002), and in those with low-aggressive than in those with high-aggressive PI (37.7% vs 30.1%; p = 0.0003). The false positive rates of PIRADS 4-5 lesions for any PCa were 34.2% and 57.8% for low- and high-grade PI, respectively (p = 0.002); similarly, they were 29.5% and 59.4% for mildly and highly-aggressive PI (p = 0.0003). Potential study limitations include its retrospective analysis and single-center study and lack of assessment of the type of PI. Conclusions: Bioptic PI directly correlates with false positive rates of mp-MRI in detecting csPCa. Clinicians should be aware that PI remains the most common pitfall of mp-MRI

    Bacterial Peritonitis Due to \u3ci\u3eAcinetobacter baumannii\u3c/i\u3e Sequence Type 25 with Plasmid-Borne New Delhi Metallo-Beta-Lactamase in Honduras

    Get PDF
    A carbapenem-resistant Acinetobacter baumannii strain was isolated from the peritoneal fluid of a patient with complicated intra-abdominal infection and evaluated at the Multidrug-resistant Organism Repository and Surveillance Network by wholegenome sequencing and real-time PCR. The isolate was sequence type 25 and susceptible to colistin and minocycline, with low MICs of tigecycline. blaNDM-1 was located on a plasmid with \u3e99% homology to pNDM-BJ02. The isolate carried numerous other antibiotic resistance genes, including the 16S methylase gene, armA

    Participation of women scientists in ESA solar system missions: A historical trend

    Get PDF
    We analyzed the participation of women scientists in 10 ESA (European Space Agency) Solar System missions over a period of 38 years. Being part of a spacecraft mission science team can be considered a proxy to measure the "success"in the field. Participation of women in PI (Principal Investigators) teams varied between 4% and 25 %, with several missions with no women as PI. The percentage of female scientists as Co-I (Co-Investigators) is always less than 16 %. This number is lower than the percentage of women in the International Astronomical Union from all ESA's Member State (24 %), which can give us an indication of the percentage of women in the field. We encountered many difficulties to gather the data for this study. The list of team members were not always easily accessible. An additional difficulty was to determine the percentage of female scientists in planetary science in Europe. We would like to encourage the planetary community as a whole, as well as international organizations, universities and societies to continuously gather statistics over many years. Detailed statistics are only the first step to closely monitor the development of achievement gaps and initiate measures to tackle potential causes of inequity, leading to gender inequalities in STEM careers
    • 

    corecore