14 research outputs found

    Careers in context: An international study of career goals as mesostructure between societies' career-related human potential and proactive career behaviour

    Get PDF
    Careers exist in a societal context that offers both constraints and opportunities for career actors. Whereas most studies focus on proximal individual and/or organisational-level variables, we provide insights into how career goals and behaviours are understood and embedded in the more distal societal context. More specifically, we operationalise societal context using the career-related human potential composite and aim to understand if and why career goals and behaviours vary between countries. Drawing on a model of career structuration and using multilevel mediation modelling, we draw on a survey of 17,986 employees from 27 countries, covering nine of GLOBE's 10 cultural clusters, and national statistical data to examine the relationship between societal context (macrostructure building the career-opportunity structure) and actors' career goals (career mesostructure) and career behaviour (actions). We show that societal context in terms of societies' career-related human potential composite is negatively associated with the importance given to financial achievements as a specific career mesostructure in a society that is positively related to individuals' proactive career behaviour. Our career mesostructure fully mediates the relationship between societal context and individuals' proactive career behaviour. In this way, we expand career theory's scope beyond occupation- and organisation-related factors

    Nickel-rare earth electrodes for sodium borohydride electrooxidation

    No full text
    Binary alloys of nickel (Ni) and dysprosium (Dy) or samarium (Sm) of different composition were prepared. Their electrocatalytic activity in respect to borohydride oxidation in alkaline medium was investigated by cyclic voltammetry, chronoamperometry and chronopotentiometry. It was correlated to their morphological and structural properties examined by SEM/EDXS and XRPD. Ni0.95Dy0.05 alloy electrode showed the highest electrocatalytic activity for BOR, and Ni0.90Sm0.10 showed the lowest. The activity of the rare earth alloys was compared to other Ni- and Pt-based materials, with promising results being reported, which envisage application of these materials as electrodes in direct borohydride fuel cells

    Electroanalytical sensing of trace amounts of As(III) in water resources by Gold\u2013Rare Earth alloys

    No full text
    Gold\u2013Rare Earth (Au-RE, RE = Sm, Dy, Ho, Y) alloys were prepared by co-melting stoichiometric amounts of metals. XRPD and SEM/EDX analysis revealed the formation of equiatomic compounds. These alloys were used for the preparation of electrodes for As(III) sensing in aqueous samples. All four electrodes gave a clear response in the presence of As(III) in weakly alkaline media (NaHCO3 + Na2CO3 buffer). Following optimisation of operating parameters (deposition potential of 120.9 V vs SCE and deposition time of 180 s), limits of detection of As(III) at four electrodes were determined to be in 0.8\u20132.3 ppb region. Au-RE electrodes gave a clear response in the presence of Cu(II) as model interferent and, finally, showed the ability for As(III) sensing in a real sample

    Platinum–Dysprosium Alloys as Oxygen Electrodes in Alkaline Media: An Experimental and Theoretical Study

    No full text
    Platinum–dysprosium (Pt–Dy) alloys prepared by the arc melting technique are assessed as potential electrodes for the oxygen reduction reaction (ORR) using voltammetry and chronoamperometry in alkaline media. A relatively small change (10 at.%) in the alloy composition brought a notable difference in the alloys’ performance for the ORR. Pt40Dy60 electrode, i.e., the electrode with a lower amount of Pt, was identified to have a higher activity towards ORR as evidenced by lower overpotential and higher current densities under identical experimental conditions. Furthermore, DFT calculations point out the unique single-atom-like coordination and electronic structure of Pt atoms in the Pt40Dy60 surface as responsible for enhanced ORR activity compared to the alloy with a higher Pt content. Additionally, Pt–Dy alloys showed activity in the oxygen evolution reaction (OER), with the OER current density lower than that of pure Pt

    A MOOC‐based flipped experience: Scaffolding SRL strategies improves learners’ time management and engagement

    No full text
    International audienceHigher education institutions are increasingly considering the use of a form of blended learning, commonly named as flipped classroom (FC), in which students watch video lectures drawn from a massive online open course (MOOC) before a face-to-face lecture. This methodology is attractive, as it allows institutions to reuse high-quality material developed for MOOCs, while increasing learning flexibility and the students’ autonomy. However, the adoption of this methodology is low in general, especially in Engineering courses, as its implementation faces a number of challenges for students. The most salient challenge is the lack of student self-regulatory skills, which may result in frustration and low performance. In this paper, we study how a self-regulatory learning technological scaffold, which provides students with feedback about their activity in the MOOC, affects the engagement and performance of students in an Engineering course following a MOOC-based FC approach. To this end, we design an observational study with the participation of 242 students: 133 students in the experimental group (EG) who used a technological scaffold and 109 in the control group (CG) who did not. We did not find a statistically significant difference between the academic achievements of both groups. However, the EG exhibited a statistically significant greater engagement with the course and a more accurate strategic planning than the CG. The main implications for scaffolding self-regulated learning in FC derived from these results are discussed

    Careers in context: An international study of career goals as mesostructure between societies' career-related human potential and proactive career behaviour

    Get PDF
    Careers exist in a societal context that offers both constraints and opportunities for career actors. Whereas most studies focus on proximal individual and/or organisationallevel variables, we provide insights into how career goals and behaviours are understood and embedded in the more distal societal context. More specifically, we operationalise societal context using the career-related human potential composite and aim to understand if and why career goals and behaviours vary between countries. Drawing on a model of career structuration and using multilevel mediation modelling, we draw on a survey of 17,986 employees from 27 countries, covering nine of GLOBE's 10 cultural clusters, and national statistical data to examine the relationship between societal context (macrostructure building the career-opportunity structure) and actors' career goals (career mesostructure) and career behaviour (actions). We show that societal context in terms of societies' career related human potential composite is negatively associated with the importance given to financial achievements as a specific career mesostructure in a society that is positively related to individuals' proactive career behaviour. Our career mesostructure fully mediates the relationship between societal context and individuals' proactive career behaviour. In this way, we expand career theory's scope beyond occupation- and organisation-related factors
    corecore