6 research outputs found

    Low Cost Magnetometer Calibration and Distributed Simultaneous Multipoint Ionospheric Measurements from a Sounding Rocket Platform

    Get PDF
    Low-cost and low-size-weight-and-power (SWaP) magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory (SAIL) at Embry-Riddle Aeronautical University has launched a multitude of sounding rockets in recent history: one night-time mid-latitude rocket from Wallops Flight Facility in August 2022 and three mid-latitude rockets from White Sands Missile Range during the October 2023 annular solar eclipse. All rockets had a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite was one science-grade three-axis fluxgate magnetometer (Billingsley TFM65VQS / TFM100G2) and up to six commercial-off-the-shelf magnetometers (PNI RM3100) distributed between the main payload and up to four ejectable subpayloads per rocket. These low-cost and low SWaP magnetometers can achieve a resolution of approximately 1 nT and a precision of +/-4 nT (one sigma) at 15 Hz in the absence of environmental noise. This performance is sufficient for measuring currents that flow in the E-region ionosphere. This thesis will cover the magnetometer calibration process used for these sounding rocket missions, the calibration results, and some analysis of the flight data. For the first time, distributed multi-point and temporally-spaced in-situ magnetometer measurements have been recorded during a solar eclipse, providing the first chance to observe the time-dependent effect of the eclipse shadow on the local vertical structure of the solar quiet (Sq) current

    Balloon Borne GPSsondes that Enable Simultaneous Multi-Point Atmospheric Sensing with a Single Ground Station

    Get PDF
    Balloon-borne radiosondes provide measurements of in-situ atmospheric data such as wind velocity, temperature, and pressure, amongst many others. The Space and Atmospheric Instrumentation Laboratory at Embry-Riddle Aeronautical University has developed low cost (\u3c $150, all inclusive) GPS-enabled radiosondes that are capable of having multiple balloons simultaneously in the air communicating to a single omni-directional ground station antenna. Each GPS-sonde is equipped with a GPS Module for zonal and meridional winds, thermistor for in-situ temperature, and a pressure sensor. Slant range of greater than 120km is achieved through low-cost LoRa radio modules. Interference-free transmission timing between multiple payloads is done by time division multiplexing. The current design allows for up to six payloads to be simultaneously airborne and transmit live atmospheric data through one ground station. A higher number of simultaneous transmissions are also possible, albeit with a minor hit to spatial resolution. We present the system design, complete with hardware and software details, as well data from our current test flights and plans for future development

    Low Cost Magnetometer Calibration and Distributed Simultaneous Multipoint Ionospheric Measurements from a Sounding Rocket Platform

    Get PDF
    Low cost and low size-weight-and-power magnetometers can provide greater accessibility for distributed simultaneous measurements in the ionosphere, either onboard sounding rockets or on CubeSats. The Space and Atmospheric Instrumentation Laboratory at Embry-Riddle Aeronautical University launched a midlatitude sounding rocket named SpEED Demon from Wallops Flight Facility in August 2022. SpEED Demon has a comprehensive suite of instruments for electrodynamics and neutral dynamics measurements. Among this suite is one high performance Billingsley magnetometer (TFM65VQS) and six commercial-off-the-shelf magnetometers manufactured by the PNI Corporation (RM3100). Of the six, two PNI magnetometers are situated on a deployable boom on the main payload that also carries the Billingsley magnetometer. The remaining four PNI magnetometers are distributed among four ejectable subpayloads. These low-cost and low SWaP magnetometers can achieve a resolution of approximately 1.5 nT and a precision of +/- 4 nT (one sigma) at 15 Hz in a uniform magnetic field. This performance is sufficient for detecting and measuring field aligned currents as well as a variety of other geomagnetic disturbances. The magnetometers are calibrated against an independently calibrated flux-gate magnetometer inside a Helmholtz cage. Zero field offsets are quantified inside a triple-layer mu-metal zero gauss chamber. This work will present the calibration process, the calibration results, and the flight performance of these sensors from the SpEED Demon sounding rocket launch

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore