9 research outputs found

    Biochemical indicators of sports achievements in highly qualified wrestlers

    Get PDF
    Objective: to conduct comparative analysis of blood biochemical parameters (urea, ALT, AST, creatinkinase, cortisol, testosterone and testosterone / cortisol ratio) in groups of highΒ­class wrestlers with different levels of sports achievements.Materials and methods: male athletes (n = 78), members of the Russian national team in one of the types of wrestling (the average age is 25.2 (21.5–28.9) years, the average weight is 76.9 (68.4–83.4) kg) were recruited to this study. The examined athletes were divided into two groups according to their sporting achievements. The first one β€” SHA group (superΒ­high achievements) which included athletes (n = 19) who had victories and prizes at the largest international competitions (European, World, Olympic Games), and the second group β€” MNT group (members of the national team) which included athletes that did not have similar achievements (n = 59). The following biochemical parameters were studied: urea, creatine kinase, ALT, AST, testosterone, cortisol, anabolic index (AI).Results: the absolute values of all metabolites in the examined athletes were within the reference intervals. Statistically significant differences in most of the biochemical parameters were revealed between the compared groups in terms of the level of sports achievements. The SHA group showed a statistically significant shift in relation to MNT group, in direction of increasing the level of metabolites that characterize the predominance of anabolic processes β€” ALT, testosterone, AI. Metabolite levels, increase which reflects catabolic processes activity and inadequate or insufficient adaptation processes, in the SHA group were significantly lower than in the MNT group. The above changes of the absolute values of biochemical parameters were confirmed by correlation analysis.Conclusions: the obtained results allow us to state the optimal adaptation of this sport, the adequacy of metabolic processes in the group of highly qualified athletes

    DNA import competence and mitochondrial genetics

    No full text
    Aim. To understand the mechanism(s) underlying mitochondrial competence for DNA uptake and to exploit these pathways for the development of in vivo models of gene therapy. Methods. DNA uptake into isolated mitochondria from plant or from mutant Saccharomyces cerevisiae defective for mitochondrial proteins and carriers, biochemical approaches and transfection of mammalian cells with DNA bound to mitochondriotropic liposomes. Results. Special focus on the inner membrane showed the involvement of isoforms of the adenine nucleotide translocator and the contribution of proteins controlling mitochondrial morphology in DNA uptake into yeast organelles. Transfection assays led to significant incorporation of a mitochondrial construct into mammalian cells and expression of a marker gene. Conclusions. The data imply that there are multiple mitochondrial DNA import pathways. On the other hand, preliminary results suggest that mitochondriotropic liposomes can deliver DNA to mitochondria in live mammalian cells.ΠœΠ΅Ρ‚Π°. Π’ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ поглинання Π”ΠΠš мітохондріями Ρ– використати Ρ—Ρ… для удосконалСння Ρ–ΡΠ½ΡƒΡŽΡ‡ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π³Π΅Π½Π½ΠΎΡ— Ρ‚Π΅Ρ€Π°ΠΏΡ–Ρ— in vivo. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. Поглинання Π”ΠΠš Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΈΠΌΠΈ мітохондріями рослин Π°Π±ΠΎ мітохондріями ΠΌΡƒΡ‚Π°Π½Ρ‚Π½ΠΈΡ… Π»Ρ–Π½Ρ–ΠΉ Saccharomyces cerevisiae, Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½ΠΈΡ… Π·Π° ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΈΠΌΠΈ Π±Ρ–Π»ΠΊΠ°ΠΌΠΈ Ρ‚Π° пСрСносниками, Π±Ρ–ΠΎΡ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ Ρ– трансфСкція Π² ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ссавців Π”ΠΠš, зв’язаної Π· ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΎΡ‚Ρ€ΠΎΠΏΠ½ΠΈΠΌΠΈ ліпосомами. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Основним підсумком вивчСння Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½ΡŒΠΎΡ— ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ΠΈ виявилося встановлСння Ρ‚ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚Π°, Ρ‰ΠΎ Π΄ΠΎ процСсу пСрСнСсСння Π”ΠΠš Π΄Ρ€Ρ–ΠΆΠ΄ΠΆΠΎΠ²ΠΈΠΌΠΈ ΠΎΡ€Π³Π°Π½Π΅Π»Π°ΠΌΠΈ Π·Π°Π»ΡƒΡ‡Π΅Π½Ρ– ΠΊΡ–Π»ΡŒΠΊΠ° Ρ–Π·ΠΎΡ„ΠΎΡ€ΠΌ адСніннуклСотидтранслокази, Π° Ρ‚Π°ΠΊΠΎΠΆ Π±Ρ–Π»ΠΊΠΈ, які ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΡŽΡ‚ΡŒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½Ρƒ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³Ρ–ΡŽ. Π’ СкспСримСнтах Π· трансфСкції Π”ΠΠš Ρƒ ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ ссавців виявлСно вбудовування Π² Π½ΠΈΡ… ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΡ— конструкції Ρ– Π΅ΠΊΡΠΏΡ€Π΅ΡΡ–ΡŽ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π°. Висновки. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π΄Π°Π½Ρ– Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ припустити існування Π΄Π΅ΠΊΡ–Π»ΡŒΠΊΠΎΡ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ–Π² Ρ–ΠΌΠΏΠΎΡ€Ρ‚Ρƒ Π”ΠΠš Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ—. ΠŸΡ€ΠΎΡ‚Π΅ Ρ” ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ, які ΠΏΠΎΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ, Ρ‰ΠΎ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΎΡ‚Ρ€ΠΎΠΏΠ½Ρ– ліпосоми ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для доставки Π”ΠΠš Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ— ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ ссавців in vivo.ЦСль. Π’Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ поглощСния Π”ΠΠš митохондриями ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… для ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π³Π΅Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ in vivo. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΠΎΠ³Π»ΠΎΡ‰Π΅Π½ΠΈΠ΅ Π”ΠΠš ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ митохондриями растСний ΠΈΠ»ΠΈ митохондриями ΠΌΡƒΡ‚Π°Π½Ρ‚Π½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ Saccharomyces cerevisiae, Π΄Π΅Ρ„Π΅ΠΊΡ‚Π½Ρ‹Ρ… ΠΏΠΎ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π±Π΅Π»ΠΊΠ°ΠΌ ΠΈ пСрСносчикам, биохимичСскиС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΈ трансфСкция Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Π”ΠΠš, связанной с ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΎΡ‚Ρ€ΠΎΠΏΠ½Ρ‹ΠΌΠΈ липосомами. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ ΠΈΡ‚ΠΎΠ³ΠΎΠΌ изучСния Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρ‹ оказалось установлСниС Ρ‚ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚Π°, Ρ‡Ρ‚ΠΎ Π² процСсс пСрСноса Π”ΠΠš Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹ΠΌΠΈ ΠΎΡ€Π³Π°Π½Π΅Π»Π»Π°ΠΌΠΈ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Ρ‹ нСсколько ΠΈΠ·ΠΎΡ„ΠΎΡ€ΠΌ адСниннуклСотидтранслоказы, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π±Π΅Π»ΠΊΠΈ, ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ. Π’ экспСримСнтах ΠΏΠΎ трансфСкции Π”ΠΠš Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… выявлСны встраиваниС Π² Π½ΠΈΡ… ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ конструкции ΠΈ ΡΠΊΡΠΏΡ€Π΅ΡΡΠΈΡŽ ΠΌΠ°Ρ€ΠΊΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π³Π΅Π½Π°. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ сущСствованиС Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΈΠΌΠΏΠΎΡ€Ρ‚Π° Π”ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ. Однако Π΅ΡΡ‚ΡŒ ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΎΡ‚Ρ€ΠΎΠΏΠ½Ρ‹Π΅ липосомы ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для доставки Π”ΠΠš Π² ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… in vivo

    DNA import competence and mitochondrial genetics

    Get PDF
    Aim. To understand the mechanism(s) underlying mitochondrial competence for DNA uptake and to exploit these pathways for the development of in vivo models of gene therapy. Methods. DNA uptake into isolated mitochondria from plant or from mutant Saccharomyces cerevisiae defective for mitochondrial proteins and carriers, biochemical approaches and transfection of mammalian cells with DNA bound to mitochondriotropic liposomes. Results. Special focus on the inner membrane showed the involvement of isoforms of the adenine nucleotide translocator and the contribution of proteins controlling mitochondrial morphology in DNA uptake into yeast organelles. Transfection assays led to significant incorporation of a mitochondrial construct into mammalian cells and expression of a marker gene. Conclusions. The data imply that there are multiple mitochondrial DNA import pathways. On the other hand, preliminary results suggest that mitochondriotropic liposomes can deliver DNA to mitochondria in live mammalian cells

    Drug Safety for Children β€” International Monitoring Data for 50 Years

    Get PDF
    The review article presents a summary of adverse drug reactions (ADR)Β  in children, information about which was received in 1968–2018 in the International database VigiBase (Uppsala monitoring center, UMC).Β  Of theΒ  18.4 million Individual Safety Case Reports (ICSR)Β  received overΒ  50 years by VigiBase, 1.47 million ICSR contain information on theΒ  safety of pharmacotherapy in patients under theΒ  age of 18,Β  including: 34 510Β  reports contain information on ADRΒ  in children under theΒ  ageΒ  of 27 days, 415Β  678Β  β€” in children agedΒ  28 daysΒ  to 23 months, 613 676 β€” aged 2 to 11 years and 405 202 ICSR β€” in patients aged 12 to 17 years inclusive. During 2018Β  141 655 ICSR ADR of children in VigiBase was received. The most common reason for submitting reports on adverse effects in children was vaccines, antibiotics, non-steroidal antiinflammatory drugs, analgesics-antipyretics, anti-acne and valproic acid. The most common side effects of drugs in children were the following ADR: hyperthermia, rash, vomiting, nausea, urticaria, diarrhea, itching, headache, erythema at injection site, convulsion. Separate data on 6 age groups about 10 most frequent ADR in children andΒ  about 10 medicines which ICSR most often arrived in VigiBase for 50 years and for 2018Β  are given

    DNA lesions and repair in trypanosomatids infection

    No full text

    Microbiota and mitobiota. Putting an equal sign between mitochondria and bacteria

    No full text

    A Second bibliography on semi-Markov processes

    No full text
    corecore