1,131 research outputs found
The braincase and jaws of a Devonian 'acanthodian' and modern gnathostome origins.
Modern gnathostomes (jawed vertebrates) emerged in the early Palaeozoic era, but this event remains unclear owing to a scant early fossil record. The exclusively Palaeozoic acanthodians are possibly the earliest gnathostome group and exhibit a mosaic of shark- and bony fish-like characters that has long given them prominence in discussions of early gnathostome evolution. Their relationships with modern gnathostomes have remained mysterious, partly because their un-mineralized endoskeletons rarely fossilized. Here I present the first-known braincase of an Early Devonian (approximately 418-412 Myr bp) acanthodian, Ptomacanthus anglicus, and re-evaluate the interrelationships of basal gnathostomes. Acanthodian braincases have previously been represented by a single genus, Acanthodes, which occurs more than 100 million years later in the fossil record. The braincase of Ptomacanthus differs radically from the osteichthyan-like braincase of Acanthodes in exhibiting several plesiomorphic features shared with placoderms and some early chondrichthyans. Most striking is its extremely short sphenoid region and its jaw suspension, which displays features intermediate between some Palaeozoic chondrichthyans and osteichthyans. Phylogenetic analysis resolves Ptomacanthus as either the most basal chondrichthyan or as the sister group of all living gnathostomes. These new data alter earlier conceptions of basal gnathostome phylogeny and thus help to provide a more detailed picture of the acquisition of early gnathostome characters
Optically trapped bacteria pairs reveal discrete motile response to control aggregation upon cell–cell approach
Aggregation of bacteria plays a key role in the formation of many biofilms. The critical first step is cell–cell approach, and yet the ability of bacteria to control the likelihood of aggregation during this primary phase is unknown. Here, we use optical tweezers to measure the force between isolated Bacillus subtilis cells during approach. As we move the bacteria towards each other, cell motility (bacterial swimming) initiates the generation of repulsive forces at bacterial separations of ~3 μm. Moreover, the motile response displays spatial sensitivity with greater cell–cell repulsion evident as inter-bacterial distances decrease. To examine the environmental influence on the inter-bacterial forces, we perform the experiment with bacteria suspended in Tryptic Soy Broth, NaCl solution and deionised water. Our experiments demonstrate that repulsive forces are strongest in systems that inhibit biofilm formation (Tryptic Soy Broth), while attractive forces are weak and rare, even in systems where biofilms develop (NaCl solution). These results reveal that bacteria are able to control the likelihood of aggregation during the approach phase through a discretely modulated motile response. Clearly, the force-generating motility we observe during approach promotes biofilm prevention, rather than biofilm formation
People of the British Isles: preliminary analysis of genotypes and surnames in a UK control population
There is a great deal of interest in fine scale population structure in the UK, both as a signature of historical immigration events and because of the effect population structure may have on disease association studies. Although population structure appears to have a minor impact on the current generation of genome-wide association studies, it is likely to play a significant part in the next generation of studies designed to search for rare variants. A powerful way of detecting such structure is to control and document carefully the provenance of the samples involved. Here we describe the collection of a cohort of rural UK samples (The People of the British Isles), aimed at providing a well-characterised UK control population that can be used as a resource by the research community as well as
providing fine scale genetic information on the British population. So far, some 4,000 samples have been collected, the majority of which fit the criteria of coming from a rural area and having all four grandparents from approximately the same area. Analysis of the first 3,865 samples that have been geocoded indicates that 75% have
a mean distance between grandparental places of birth of 37.3km, and that about 70% of grandparental places of birth can be classed as rural. Preliminary genotyping of 1,057
samples demonstrates the value of these samples for investigating fine scale population structure within the UK, and shows how this can be enhanced by the use of surnames
A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
We introduce a space–time Trefftz discontinuous Galerkin method for the first-order transient acoustic wave equations in arbitrary space dimensions, extending the one-dimensional scheme of Kretzschmar et al. (IMA J Numer Anal 36:1599–1635, 2016). Test and trial discrete functions are space–time piecewise polynomial solutions of the wave equations. We prove well-posedness and a priori error bounds in both skeleton-based and mesh-independent norms. The space–time formulation corresponds to an implicit time-stepping scheme, if posed on meshes partitioned in time slabs, or to an explicit scheme, if posed on “tent-pitched” meshes. We describe two Trefftz polynomial discrete spaces, introduce bases for them and prove optimal, high-order h-convergence bounds
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature
The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability
Thermo-Mechanical Effect on Poly Crystalline Boron Nitride Tool Life During Friction Stir Welding (Dwell Period)
Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool’s binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model
- …