327 research outputs found
Risk assessment for the spread of Serratia marcescens within dental-unit waterline systems using Vermamoeba vermiformis
Vermamoeba vermiformis is associated with the biofilm ecology of dental-unit waterlines (DUWLs). This study investigated whether V. vermiformis is able to act as a vector for potentially pathogenic bacteria and so aid their dispersal within DUWL systems. Clinical dental water was initially examined for Legionella species by inoculating it onto Legionella selective-medium plates. The molecular identity/profile of the glassy colonies obtained indicated none of these isolates were Legionella species. During this work bacterial colonies were identified as a non-pigmented Serratia marcescens. As the water was from a clinical DUWL which had been treated with Alpron™ this prompted the question as to whether S. marcescens had developed resistance to the biocide. Exposure to Alpron™ indicated that this dental biocide was effective, under laboratory conditions, against S. marcescens at up to 1x108 colony forming units/millilitre (cfu/ml). V. vermiformis was cultured for eight weeks on cells of S. marcescens and Escherichia coli. Subsequent electron microscopy showed that V. vermiformis grew equally well on S. marcescens and E. coli (p = 0.0001). Failure to detect the presence of S. marcescens within the encysted amoebae suggests that V. vermiformis is unlikely to act as a vector supporting the growth of this newly isolated, nosocomial bacterium
Learning to mark: a qualitative study of the experiences and concerns of medical markers
BACKGROUND: Although there is published research on the methods markers use in marking various types of assessment, there is relatively little information on the processes markers use in approaching a marking exercise. This qualitative paper describes the preparation and experiences of general practice (GP) teachers who undertake marking a written assessment in an undergraduate medical course. METHODS: Semi-structured interviews were conducted with seven of the 16 GP tutors on an undergraduate course. The purposive sample comprised two new markers, two who had marked for a couple of years and three experienced markers. Each respondent was interviewed twice, once following a formative assessment of a written case study, and again after a summative assessment. All interviews were audio-taped and analysed for emerging themes. A respondent validation exercise was conducted with all 16 GP tutors. RESULTS: Markers had internal concerns about their ability to mark fairly and made considerable efforts to calibrate their marking. They needed guidance and coaching when marking for the first time and adopted a variety of marking styles, reaching a decision through a number of routes. Dealing with pass/fail borderline scripts and the consequences of the mark on the student were particular concerns. Even experienced markers felt the need to calibrate their marks both internally and externally CONCLUSION: Previous experience of marking appears to improve markers' confidence and is a factor in determining the role which markers adopt. Confidence can be improved by giving clear instructions, along with examples of marking. The authors propose that one method of providing this support and coaching could be by a process of peer review of a selection of papers prior to the main marking. New markers in particular would benefit from further guidance, however they are influenced by others early on in their marking career and course organisers should be mindful of this when arranging double marking
The role of peer meetings for professional development in health science education: a qualitative analysis of reflective essays
Introduction The development of professional behaviour is an important objective for students in Health Sciences, with reflective skills being a basic condition for this development. Literature describes a variety of methods giving students opportunities and encouragement for reflection. Although the literature states that learning and working together in peer meetings fosters reflection, these findings are based on experienced professionals. We do not know whether participation in peer meetings also makes a positive contribution to the learning experiences of undergraduate students in terms of reflection. Aim The aim of this study is to gain an understanding of the role of peer meetings in students’ learning experiences regarding reflection. Method A phenomenographic qualitative study was undertaken. Students’ learning experiences in peer meetings were analyzed by investigating the learning reports in students’ portfolios. Data were coded using open coding. Results The results indicate that peer meetings created an interactive learning environment in which students learned about themselves, their skills and their abilities as novice professionals. Students also mentioned conditions for a well-functioning group. Conclusion The findings indicate that peer meetings foster the development of reflection skills as part of professional behaviour
Nucleoside diphosphate kinase A as a controller of AMP-kinase in airway epithelia
This review integrates recent understanding of a novel role for NDPK-A in two related directions: Firstly, its role in an airway epithelial cell when bound to the luminal (apical) membrane and secondly in the cytosol of many different cells (epithelial and non-epithelial) where an isoform-specific interaction occurs with a regulatory partner, AMPKα1. Thus NDPK-A is present in both a membrane and cytosolic environment but in the apical membrane, its roles are not understood in detail; preliminary data suggest that it co-localises with the cystic fibrosis protein (CFTR). In cytosol, we find that NDPK-A is coupled to the catalytic alpha1 isoform of the AMP-activated protein kinase (AMPKα subunit), which is part of a heterotrimeric protein complex that responds to cellular energy status by switching off ATP-consuming pathways and switching on ATP-generating pathways when ATP is limiting. We find that ATP is located within this complex and ‘fed’ from NDPK to AMPK without ever ‘seeing’ bulk solution. Importantly, the reverse can also happen such that AMPK activity can be made to decline when NDPK-A ‘steals’ ATP from AMPK. Thus we propose a novel paradigm in NDPK-A function by suggesting that AMP-kinase can be regulated by NDPK-A, independently of AMP
The Role of Oligomerization and Cooperative Regulation in Protein Function: The Case of Tryptophan Synthase
The oligomerization/co-localization of protein complexes and their cooperative regulation in protein function is a key feature in many biological systems. The synergistic regulation in different subunits often enhances the functional properties of the multi-enzyme complex. The present study used molecular dynamics and Brownian dynamics simulations to study the effects of allostery, oligomerization and intermediate channeling on enhancing the protein function of tryptophan synthase (TRPS). TRPS uses a set of α/β–dimeric units to catalyze the last two steps of L-tryptophan biosynthesis, and the rate is remarkably slower in the isolated monomers. Our work shows that without their binding partner, the isolated monomers are stable and more rigid. The substrates can form fairly stable interactions with the protein in both forms when the protein reaches the final ligand–bound conformations. Our simulations also revealed that the α/β–dimeric unit stabilizes the substrate–protein conformation in the ligand binding process, which lowers the conformation transition barrier and helps the protein conformations shift from an open/inactive form to a closed/active form. Brownian dynamics simulations with a coarse-grained model illustrate how protein conformations affect substrate channeling. The results highlight the complex roles of protein oligomerization and the fine balance between rigidity and dynamics in protein function
Human Polycomb 2 Protein Is a SUMO E3 Ligase and Alleviates Substrate-Induced Inhibition of Cystathionine β-Synthase Sumoylation
Human cystathionine β-synthase (CBS) catalyzes the first irreversible
step in the transsulfuration pathway and commits homocysteine to the synthesis
of cysteine. Mutations in CBS are the most common cause of severe hereditary
hyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins that
interact with CBS had previously identified several components of the
sumoylation pathway and resulted in the demonstration that CBS is a substrate
for sumoylation. In this study, we demonstrate that sumoylation of CBS is
enhanced in the presence of human polycomb group protein 2 (hPc2), an
interacting partner that was identified in the initial yeast two-hybrid screen.
When the substrates for CBS, homocysteine and serine for cystathionine
generation and homocysteine and cysteine for H2S generation, are
added to the sumoylation mixture, they inhibit the sumoylation reaction, but
only in the absence of hPc2. Similarly, the product of the CBS reaction,
cystathionine, inhibits sumoylation in the absence of hPc2. Sumoylation in turn
decreases CBS activity by ∼28% in the absence of hPc2 and by
70% in its presence. Based on these results, we conclude that hPc2
serves as a SUMO E3 ligase for CBS, increasing the efficiency of sumoylation. We
also demonstrate that γ-cystathionase, the second enzyme in the
transsulfuration pathway is a substrate for sumoylation under in vitro
conditions. We speculate that the role of this modification may be for nuclear
localization of the cysteine-generating pathway under conditions where nuclear
glutathione demand is high
Disinhibition Mediates a Form of Hippocampal Long-Term Potentiation in Area CA1
The hippocampus plays a central role in memory formation in the mammalian brain. Its ability to encode information is thought to depend on the plasticity of synaptic connections between neurons. In the pyramidal neurons constituting the primary hippocampal output to the cortex, located in area CA1, firing of presynaptic CA3 pyramidal neurons produces monosynaptic excitatory postsynaptic potentials (EPSPs) followed rapidly by feedforward (disynaptic) inhibitory postsynaptic potentials (IPSPs). Long-term potentiation (LTP) of the monosynaptic glutamatergic inputs has become the leading model of synaptic plasticity, in part due to its dependence on NMDA receptors (NMDARs), required for spatial and temporal learning in intact animals. Using whole-cell recording in hippocampal slices from adult rats, we find that the efficacy of synaptic transmission from CA3 to CA1 can be enhanced without the induction of classic LTP at the glutamatergic inputs. Taking care not to directly stimulate inhibitory fibers, we show that the induction of GABAergic plasticity at feedforward inhibitory inputs results in the reduced shunting of excitatory currents, producing a long-term increase in the amplitude of Schaffer collateral-mediated postsynaptic potentials. Like classic LTP, disinhibition-mediated LTP requires NMDAR activation, suggesting a role in types of learning and memory attributed primarily to the former and raising the possibility of a previously unrecognized target for therapeutic intervention in disorders linked to memory deficits, as well as a potentially overlooked site of LTP expression in other areas of the brain
- …