1,729 research outputs found

    Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease.

    Get PDF
    Trypanosoma cruzi, the etiological agent of Chagas disease, is highly genetically diverse. Numerous lines of evidence point to the existence of six stable genetic lineages or DTUs: TcI, TcIIa, TcIIb, TcIIc, TcIId, and TcIIe. Molecular dating suggests that T. cruzi is likely to have been an endemic infection of neotropical mammalian fauna for many millions of years. Here we have applied a panel of 49 polymorphic microsatellite markers developed from the online T. cruzi genome to document genetic diversity among 53 isolates belonging to TcIIc, a lineage so far recorded almost exclusively in silvatic transmission cycles but increasingly a potential source of human infection. These data are complemented by parallel analysis of sequence variation in a fragment of the glucose-6-phosphate isomerase gene. New isolates confirm that TcIIc is associated with terrestrial transmission cycles and armadillo reservoir hosts, and demonstrate that TcIIc is far more widespread than previously thought, with a distribution at least from Western Venezuela to the Argentine Chaco. We show that TcIIc is truly a discrete T. cruzi lineage, that it could have an ancient origin and that diversity occurs within the terrestrial niche independently of the host species. We also show that spatial structure among TcIIc isolates from its principal host, the armadillo Dasypus novemcinctus, is greater than that among TcI from Didelphis spp. opossums and link this observation to differences in ecology of their respective niches. Homozygosity in TcIIc populations and some linkage indices indicate the possibility of recombination but cannot yet be effectively discriminated from a high genome-wide frequency of gene conversion. Finally, we suggest that the derived TcIIc population genetic data have a vital role in determining the origin of the epidemiologically important hybrid lineages TcIId and TcIIe

    Multilocus sequence and microsatellite identification of intra-specific hybrids and ancestor-like donors among natural Ethiopian isolates of Leishmania donovani.

    Get PDF
    Protozoan parasites of the genus Leishmania (Kinetoplastida: Trypanosomatidae) cause widespread and devastating human diseases. Visceral leishmaniasis is endemic in Ethiopia where it has also been responsible for fatal epidemics. It is postulated that genetic exchange in Leishmania has implications for heterosis (hybrid vigour), spread of virulent strains, resistance to chemotherapeutics, and exploitation of different hosts and vectors. Here we analyse 11 natural Ethiopian Leishmania donovani isolates consisting of four putative hybrids, seven parent-like isolates and over 90 derived biological clones. We apply a novel combination of high resolution multilocus microsatellite typing (five loci) and multilocus sequence typing (four loci) that together distinguish parent-like and hybrid L. donovani strains. Results indicate that the four isolates (and their associated biological clones) are genetic hybrids, not the results of mixed infections, each possessing heterozygous markers consistent with inheritance of divergent alleles from genetically distinct Ethiopian L. donovani lineages. The allelic profiles of the putative hybrids may have arisen from a single hybridisation event followed by inbreeding or gene conversion, or alternatively from two or more hybridisation events. Mitochondrial sequencing showed uniparental maxicircle inheritance for all of the hybrids, each possessing a single mitochondrial genotype. Fluorescence activated cell sorting analysis of DNA content demonstrated that all hybrids and their associated clones were diploid. Together the data imply that intra-specific genetic exchange is a recurrent feature of natural L. donovani populations, with substantial implications for the phyloepidemiology of Leishmania

    Missileborne Artificial Vision System (MAVIS)

    Get PDF
    Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be the only way to do high density neural computing. In the last five years, however, digital parallel processing chips capable of performing neural computation functions have evolved to the point of rough equality with analog chips in system level computational density. The Naval Air Warfare Center, China Lake, has developed a real time, hardware and software system designed to implement and evaluate biologically inspired retinal and cortical models. The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards. Each COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at 20 MHz in a SIMD configuration. Each COHO board has a companion board built to support a real time VSB interface to an imaging seeker, a NTSC camera, and to other COHO boards. The system is designed to have multiple SIMD machines each performing different corticomorphic functions. The system level software has been developed which allows a high level description of corticomorphic structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are those neural structures with a form similar to that of the retina, the lateral geniculate nucleus, or the visual cortex. This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical missiles. Initial versions of the software and hardware have been completed and are in the early stages of integration with a missile seeker

    The neural correlates of emotion regulation by implementation intentions

    Get PDF
    Several studies have investigated the neural basis of effortful emotion regulation (ER) but the neural basis of automatic ER has been less comprehensively explored. The present study investigated the neural basis of automatic ER supported by ‘implementation intentions’. 40 healthy participants underwent fMRI while viewing emotion-eliciting images and used either a previously-taught effortful ER strategy, in the form of a goal intention (e.g., try to take a detached perspective), or a more automatic ER strategy, in the form of an implementation intention (e.g., “If I see something disgusting, then I will think these are just pixels on the screen!”), to regulate their emotional response. Whereas goal intention ER strategies were associated with activation of brain areas previously reported to be involved in effortful ER (including dorsolateral prefrontal cortex), ER strategies based on an implementation intention strategy were associated with activation of right inferior frontal gyrus and ventro-parietal cortex, which may reflect the attentional control processes automatically captured by the cue for action contained within the implementation intention. Goal intentions were also associated with less effective modulation of left amygdala, supporting the increased efficacy of ER under implementation intention instructions, which showed coupling of orbitofrontal cortex and amygdala. The findings support previous behavioural studies in suggesting that forming an implementation intention enables people to enact goal-directed responses with less effort and more efficiency

    Selective GSK3B Deletion in Camk2a+ Forebrain Neurons or Inhibition Via Tideglusib, Decreases Ethanol Consumption in C57BL/6J Mice

    Get PDF
    Purpose: We previously identified glycogen synthase kinase-3 beta (Gsk3b) as a central member of a gene network highly regulated by acute ethanol in medial prefrontal cortex (mPFC) and associated with risk for alcohol dependence in humans. Further, we have demonstrated modulation of Gsk3b alters ethanol consumption in rodent models. GSK3B could thus represent a potential new therapeutic target for the treatment of alcohol use disorder (AUD). Here, we investigate the mechanisms of Gsk3b action in ethanol consumption and report preclinical evidence for the selective GSK3B inhibitor, tideglusib, as a therapeutic agent for AUD. Methods: (1) Selective Cre-induced Gsk3b deletion in Camk2a-neurons within the forebrain using transgenic Camk2a-CreER/Gsk3b floxed mice bred with Gsk3b fl/fl mice to produce Cre/Gsk3b fl/fl mice, which were injected with tamoxifen to induce Gsk3b deletion or (2) selective pharmacological antagonism of GSK3B using Tideglusib delivered via gavage in a corn oil vehicle. Actions on drinking behavior were measured using mouse intermittent ethanol, two-bottle choice self-administration models in C57BL/6J mice. Results: Deletion of Gsk3b in Camk2a-neurons decreased ethanol consumption and preference. There was no significant effects of sex or sex*genotype on either consumption or preference, so sexes were pooled. Gsk3b deletion did not alter basal locomotor activity, anxiety-like behavior (light-dark box), taste preference for quinine or saccharin, or ethanol pharmacokinetics. Initial administration of tideglusib (100mg/kg twice daily) or corn oil vehicle via gavage decreased total fluid consumption in all groups, regardless of ethanol drinking history or tideglusib treatment. However, following prolonged tideglusib, mice decreased binge (2hr) and daily (24hr) ethanol consumption and preference after three weeks of administration relative to vehicle controls. Tideglusib studies were only performed in male mice. Control studies showed no effect of tideglusib on liver fat accumulation in ethanol consuming animals. Ongoing work is assessing alternative oral tideglusib delivery methods in decreasing ethanol consumption. Conclusion: These results suggest GSK3B may be a therapeutic target for treatment of AUD. Deletion of Gsk3b in forebrain Camk2a-neurons showed a regional and cell-type specificity in GSK3B’s modulation of ethanol consumption and preference, providing insight into the mechanisms of Gsk3b action in ethanol consumption. Targeting GSK3B using tideglusib, a selective GSK3B inhibitor, also produced a decrease in ethanol consumption and preference over water during the fourth week of treatment. These findings were consistent with previous work in our lab investigating the delivery of tideglusib through intraperitoneal injections, though these studies were limited to a shorter drug-administration period. Here we have used a more therapeutically translatable route of administration via oral gavage and begun to investigate the longer-term effects of tideglusib on ethanol behaviors and toxicity. Tideglusib is a clinically available agent that warrants investigation in the treatment of AUD. Supported by NIAAA grants P50AA022537 and R01AA027581.https://scholarscompass.vcu.edu/gradposters/1161/thumbnail.jp

    Design Principles for Generative AI Applications

    Full text link
    Generative AI applications present unique design challenges. As generative AI technologies are increasingly being incorporated into mainstream applications, there is an urgent need for guidance on how to design user experiences that foster effective and safe use. We present six principles for the design of generative AI applications that address unique characteristics of generative AI UX and offer new interpretations and extensions of known issues in the design of AI applications. Each principle is coupled with a set of design strategies for implementing that principle via UX capabilities or through the design process. The principles and strategies were developed through an iterative process involving literature review, feedback from design practitioners, validation against real-world generative AI applications, and incorporation into the design process of two generative AI applications. We anticipate the principles to usefully inform the design of generative AI applications by driving actionable design recommendations.Comment: 34 pages, 4 figures. To be published in CHI 202

    Evolutionary testing of autonomous software agents

    Get PDF
    A system built in terms of autonomous software agents may require even greater correctness assurance than one that is merely reacting to the immediate control of its users. Agents make substantial decisions for themselves, so thorough testing is an important consideration. However, autonomy also makes testing harder; by their nature, autonomous agents may react in different ways to the same inputs over time, because, for instance they have changeable goals and knowledge. For this reason, we argue that testing of autonomous agents requires a procedure that caters for a wide range of test case contexts, and that can search for the most demanding of these test cases, even when they are not apparent to the agents’ developers. In this paper, we address this problem, introducing and evaluating an approach to testing autonomous agents that uses evolutionary optimisation to generate demanding test cases. We propose a methodology to derive objective (fitness) functions that drive evolutionary algorithms, and evaluate the overall approach with two simulated autonomous agents. The obtained results show that our approach is effective in finding good test cases automatically

    Hosts and vectors of Trypanosoma cruzi discrete typing units in the Chagas disease endemic region of the Paraguayan Chaco.

    Get PDF
    Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco. We identify the T. cruzi genotypes discrete typing units (DTUs) and provide a map of their geographical distribution. A total of 1044 triatomines and 138 sylvatic mammals were captured. Five per cent of the triatomines were microscopically positive for T. cruzi (55 Triatoma infestans from Paraguay and one sylvatic Triatoma guasayana from Bolivia) and 17 animals (12·3%) comprising eight of 28 (28·5%) Dasypus novemcinctus, four of 27 (14·8%) Euphractus sexcinctus, three of 64 (4·7%) Chaetophractus spp. and two of 14 (14·3%) Didelphis albiventris. The most common DTU infecting domestic triatomine bugs was TcV (64%), followed by TcVI (28%), TcII (6·5%) and TcIII (1·5%). TcIII was overwhelmingly associated with armadillo species. We confirm the primary role of T. infestans in domestic transmission, armadillo species as the principal sylvatic hosts of TcIII, and consider the potential risk of TcIII as an agent of Chagas disease in the Chaco
    corecore