9 research outputs found

    Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up

    Get PDF
    The floating ice shelves and glacier tongues which fringe the Antarctic continent are important because they help buttress ice flow from the ice sheet interior. Dynamic feedbacks associated with glacier calving have the potential to reduce buttressing and subsequently increase ice flow into the ocean. However, there are few high temporal resolution studies on glacier calving, especially in East Antarctica. Here we use remote sensing to investigate monthly glacier terminus change across six marine-terminating outlet glaciers in Porpoise Bay (−76° S, 128° E), Wilkes Land (East Antarctica), between November 2002 and March 2012. This reveals a large simultaneous calving event in January 2007, resulting in a total of ~ 2900 km2 of ice being removed from glacier tongues. Our observations suggest that sea-ice must be removed from glacier termini for any form of calving to take place, and we link this major calving event to a rapid break-up of the multi-year sea-ice which usually occupies Porpoise Bay. Using sea-ice concentrations as a proxy for glacier calving, and by analysing available satellite imagery stretching back to 1963, we reconstruct the long-term calving activity of the largest glacier in Porpoise Bay: Holmes (West) Glacier. This reveals that its present-day velocity (~ 1450 m a−1) is approximately 50 % faster than between 1963 and 1973 (~ 900 m a−1). We also observed the start of a large calving event in Porpoise Bay in March 2016 that is consistent with our reconstructions of the periodicity of major calving events. These results highlight the importance of sea-ice in modulating outlet glacier calving and velocity in East Antarctica

    Velocity increases at Cook Glacier, East Antarctica linked to ice shelf loss and a subglacial flood event

    Get PDF
    Cook Glacier drains a large proportion of the Wilkes Subglacial Basin in East Antarctica, a region thought to be vulnerable to marine ice sheet instability and with potential to make a significant contribution to sea level. Despite its importance, there have been very few observations of its longer-term behaviour (e.g. of velocity or changes at its ice front). Here we use a variety of satellite imagery to produce a time series of ice front position change from 1947 to 2017 and ice velocity from 1973 to 2017. Cook Glacier has two distinct outlets (termed East and West), and we observe the near-complete loss of the Cook West Ice Shelf at some time between 1973 and 1989. This was associated with a doubling of the velocity of Cook West Glacier, which may also be linked to previously published reports of inland thinning. The loss of the Cook West Ice Shelf is surprising given that the present-day ocean climate conditions in the region are not typically associated with catastrophic ice shelf loss. However, we speculate that a more intense ocean climate forcing in the mid-20th century may have been important in forcing its collapse. Since the loss of the Cook West Ice Shelf, the presence of landfast sea ice and mélange in the newly formed embayment appears to be important in stabilizing the glacier front and enabling periodic advances. We also show that the last calving event at the larger Cook East Ice Shelf resulted in the retreat of its ice front into a dynamically important portion of the ice shelf and observe a short-lived increase in velocity of Cook East between 2006 and 2007, which we link to the drainage of subglacial Lake Cook. Taken together, these observations suggest that the velocity, and hence discharge, of Cook Glacier is highly sensitive to changes at its terminus, but a more detailed process-based analysis of this potentially vulnerable region requires further oceanic and bathymetric data

    Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018

    Get PDF
    Evolving conditions at the terminus of Thwaites Glacier will be important in determining the rate of its future sea-level contribution over the coming decades. Here, we use remote-sensing observations to investigate recent changes (2000–2018) in the structure and velocity of Thwaites Glacier and its floating tongue. We show that the main trunk of Thwaites Glacier has accelerated by 38% over this period, while its previously intact floating tongue has transitioned to a weaker mélange of fractured icebergs bounded by sea ice. However, the rate of structural weakening and acceleration was not uniform across the observational period and we identify two periods of rapid acceleration and structural weakening (2006–2012; 2016–2018), separated by a period of deceleration and re-advance of the structurally-intact shear margin boundary (2012–2015). The timing of these accelerations/decelerations strongly suggests a link to variable ocean forcing. The weakened tongue now has some dependency on landfast sea ice for structural integrity and is vulnerable to changes in landfast ice persistency. Future reductions in landfast sea ice could manifest from changes in climate and/or the imminent removal of the B-22A iceberg from the Thwaites embayment. Such changes could have important implications for the integrity of the ice tongue and future glacier discharge

    Pan–ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes

    Get PDF
    The dynamics of ocean-terminating outlet glaciers are an important component of ice-sheet mass balance. Using satellite imagery for the past 40 years, we compile an approximately decadal record of outlet-glacier terminus position change around the entire East Antarctic Ice Sheet (EAIS) marine margin. We find that most outlet glaciers retreated during the period 1974–1990, before switching to advance in every drainage basin during the two most recent periods, 1990–2000 and 2000–2012. The only exception to this trend was in Wilkes Land, where the majority of glaciers (74%) retreated between 2000 and 2012. We hypothesize that this anomalous retreat is linked to a reduction in sea ice and associated impacts on ocean stratification, which increases the incursion of warm deep water toward glacier termini. Because Wilkes Land overlies a large marine basin, it raises the possibility of a future sea level contribution from this sector of East Antarctica

    Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet

    Get PDF
    Supraglacial lakes are important to ice sheet mass balance because their development and drainage has been linked to changes in ice flow velocity and ice shelf disintegration. However, little is known about their distribution on the world’s largest ice sheet in East Antarctica. Here, we use ~5 million km2 of high-resolution satellite imagery to identify >65,000 lakes (>1,300 km2) that formed around the peak of the melt season in January 2017. Lakes occur in most marginal areas where they typically develop at low elevations (1500 m. We find that lakes often cluster a few kilometres down-ice from grounding lines and ~60% (>80% by area) develop on ice shelves, including some potentially vulnerable to collapse driven by lake-induced hydro-fracturing. This suggests that parts of the ice sheet may be highly sensitive to climate warming

    High spatial and temporal variability in Antarctic ice discharge linked to ice shelf buttressing and bed geometry

    Get PDF
    Antarctica’s contribution to global mean sea level rise has been driven by an increase in ice discharge into the oceans. The rate of change and the mechanisms that drive variability in ice discharge are therefore important to consider in the context of projected future warming. Here, we report observations of both decadal trends and inter-annual variability in ice discharge across the Antarctic Ice Sheet at a variety of spatial scales that range from large drainage basins to individual outlet glacier catchments. Overall, we find a 37 ± 11 Gt year−1 increase in discharge between 1999 and 2010, but a much smaller increase of 4 ± 8 Gt year−1 between 2010 and 2018. Furthermore, comparisons reveal that neighbouring outlet glaciers can behave synchronously, but others show opposing trends, despite their close proximity. We link this spatial and temporal variability to changes in ice shelf buttressing and the modulating effect of local glacier geometry

    The sensitivity of Cook Glacier, East Antarctica, to changes in ice-shelf extent and grounding-line position

    Get PDF
    The Wilkes Subglacial Basin in East Antarctica contains ice equivalent to 3–4 m of global mean sea level rise and is primarily drained by Cook Glacier. Of concern is that recent observations (since the 1970s) show an acceleration in ice speed over the grounding line of both the Eastern and Western portions of Cook Glacier. Here, we use a numerical ice-flow model (Úa) to simulate the instantaneous effects of observed changes at the terminus of Cook Glacier in order to understand the link between these changes and recently observed ice acceleration. Simulations suggest that the acceleration of Cook West was caused by a retreat in calving-front position in the 1970s, potentially enhanced by grounding-line retreat, while acceleration of Cook East was likely caused by ice-shelf thinning and grounding-line retreat in the mid-1990s. Moreover, we show that the instantaneous ice discharge at Cook East would increase by up to 85% if the whole ice shelf is removed and it ungrounds from a pinning point; and that the discharge at Cook West could increase by ~300% if its grounding line retreated by 10 km

    Recent acceleration of Denman Glacier (1972-2017), East Antarctica, driven by grounding line retreat and changes in ice tongue configuration

    Get PDF
    Denman Glacier is one of the largest in East Antarctica, with a catchment that contains an ice volume equivalent to 1.5 m of global sea-level and which sits in the Aurora Subglacial Basin (ASB). Geological evidence of this basin’s sensitivity to past warm periods, combined with recent observations showing that Denman’s ice speed is accelerating, and its grounding line is retreating along a retrograde slope, have raised the prospect that it could contribute to near-future sea-level rise. In this study, we produce the first long-term (~ 50 years) record of past glacier behaviour (ice flow speed, ice tongue structure, and calving) and combine these observations with numerical modelling to explore the likely drivers of its recent change. We find a spatially widespread acceleration of the Denman system since the 1970s across both its grounded (17 ± 4 % acceleration; 1972–2017) and floating portions (36 ± 5 % acceleration; 1972–2017). Our numerical modelling experiments show that a combination of grounding line retreat, ice tongue thinning and the unpinning of Denman’s ice tongue from a pinning point following its last major calving event are required to simulate an acceleration comparable with observations. Given its bed topography and the geological evidence that Denman Glacier has retreated substantially in the past, its recent grounding line retreat and ice flow acceleration suggest that it could be poised to make a significant contribution to sea level over the coming century

    Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years

    Get PDF
    The East Antarctic Ice Sheet (EAIS) is currently surrounded by relatively cool water, but climatic shifts have the potential to increase basal melting via intrusions of warm modified Circumpolar Deep Water (mCDW) onto the continental shelf. Here we use an ice sheet model to show that under the current ocean regime, with only limited intrusions of mCDW, the EAIS will likely gain mass over the next 200 years due to the increased precipitation from a warming atmosphere outweighing increased ice discharge due to ice-shelf melting. However, if the ocean regime were to become dominated by greater mCDW intrusions, the EAIS would have a negative mass balance, contributing up to 48 mm of SLE over this time period. Our modelling finds George V Land to be particularly at risk to increased ocean induced melting. With warmer oceans, we also find that a mid range RCP4.5 emissions scenario is likely to result in a more negative mass balance than a high RCP8.5 emissions scenario, as the relative difference between increased precipitation due to a warming atmosphere and increased ice discharge due to a warming ocean is more negative in the mid range RCP4.5 emission scenario
    corecore