136 research outputs found

    First Observation of the Rare Decay Mode K-long -> e+ e-

    Full text link
    In an experiment designed to search for and study very rare two-body decay modes of the K-long, we have observed four examples of the decay K-long -> e+ e-, where the expected background is 0.17+-0.10 events. This observation translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12}, consistent with recent theoretical predictions. This result represents by far the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure

    Second Generation Leptoquark Search in p\bar{p} Collisions at s\sqrt{s} = 1.8 TeV

    Full text link
    We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron ppˉp\bar{p} collider at s\sqrt{s} = 1.8 TeV. This search is based on 12.7 pb1^{-1} of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio β\beta or to neutrino and quark with branching ratio (1β)(1-\beta). We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c2^{2} for β=1\beta = 1 and 89 GeV/c2^{2} for β=0.5\beta = 0.5 at the 95%\ confidence level.Comment: 18 pages, FERMILAB-PUB-95/185-

    Jet Production via Strongly-Interacting Color-Singlet Exchange in ppˉp\bar{p} Collisions

    Full text link
    A study of the particle multiplicity between jets with large rapidity separation has been performed using the D{\O}detector at the Fermilab Tevatron ppˉp\bar{p} Collider operating at s=1.8\sqrt{s}=1.8 TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is 1.07±0.10(stat)0.13+0.25(syst)1.07 \pm 0.10({\rm stat})^{+ 0.25}_{- 0.13}({\rm syst})%, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of 0.80% (95% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.Comment: 15 pages (REVTeX), 3 PS figs (uuencoded/tar compressed, epsf.sty) Complete postscript available at http://d0sgi0.fnal.gov/d0pubs/journals.html Submitted to Physical Review Letter

    Measurement of the ZZγZZ\gamma and ZγγZ\gamma\gamma Couplings in ppˉp\bar p Collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8TeVwiththeD0detectorattheFermilabTevatronCollider.Afittothetransverseenergyspectrumofthephotoninthesignalevents,basedonthedatasetcorrespondingtoanintegratedluminosityof13.9pb1( TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb^-1 (13.3 pb^-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h^Z_30 < 1.8 (h^Z_40 = 0), and -0.5 < h^Z_40 < 0.5 (h^Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.Comment: 11 pages, 1 table, and 3 figure

    Measurement of the WWγWW\gamma gauge boson couplings in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The WWγWW\gamma gauge boson couplings were measured using ppˉνγ+Xp\bar{p}\to \ell\nu\gamma+X (=e,μ\ell=e,\mu) events at s=1.8\sqrt{s}=1.8 TeV observed with the {D\O} detector at the Fermilab Tevatron Collider. The signal, obtained from the data corresponding to an integrated luminosity of 13.8pb113.8 {\rm pb}^{-1}, agrees well with the Standard Model prediction. A fit to the photon transverse energy spectrum yields limits at the 95% confidence level on the CP--conserving anomalous coupling parameters of 1.6<Δκ<1.8-1.6<\Delta\kappa<1.8 (λ\lambda = 0) and 0.6<λ<0.6-0.6<\lambda<0.6 (Δκ\Delta\kappa = 0).Comment: 16pages (14pages + 2figure pages) Uses ReVTEX Two postscript files for figures will follow immediatel

    W and Z Boson Production in PbarP Collisions at Sqrt(s)=1.8 TeV

    Get PDF
    The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.Comment: 11 pages (including 2 figure pages), in REVTEX. Two PostScript figures are appended in a UUencoded fil

    Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning

    Get PDF
    Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
    corecore