569 research outputs found

    Diâmetro médio ponderado de partículas para estimativa de propriedades físico-hídricas dos solos.

    Get PDF
    O principal objetivo deste trabalho foi estimar características físico-hídricas do solo de difícil obtenção, através de modelos matemáticos baseados em variáveis das análises de rotina. Foram selecionados, em áreas de plantações florestais, 13 solos variando de 40 a 590 g kg-1 de conteúdo de argila. Nestes solos, foram obtidas amostras deformadas e indeformadas na camada de 5 cm a 15 cm, e realizadas, em laboratório, análises químicas (complexo sortivo, pH, acidez potencial) e físicas (densidade do solo, curva de retenção de umidade e porosidades). Estabeleceram-se correlações entre as variáveis umidade ótima do solo para compactação e umidade na capacidade de campo com todos os parâmetros químicos e físicos analisados. A característica do solo que apresentou o maior índice de correlação com umidade ótima (r = 0,95) e com capacidade de campo (r = 0,93) foi o diâmetro médio ponderado de partículas (DMPP). O DMPP pode ser obtido em todos os levantamentos de solo já realizados e é a soma da multiplicação entre o diâmetro médio das quatro frações granulométricas e suas concentrações no solo. A umidade do solo à -1500 kPa também se correlacionou com o DMPP (r = 0,93), o que permite estimar a quantidade de água disponível para as plantas

    Characteristics of ferroelectric-ferroelastic domains in N{\'e}el-type skyrmion host GaV4_4S8_8

    Get PDF
    GaV4_4S8_8 is a multiferroic semiconductor hosting N{\'e}el-type magnetic skyrmions dressed with electric polarization. At Ts_s = 42K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts_s, ferroelectric domains are formed with the electric polarization pointing along any of the four <111>\left< 111 \right> axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the N{\'e}el-type skyrmion lattice emerging below TC_C=13\:K, the characteristics of polar domains in GaV4_4S8_8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4_4S8_8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 μ\mum. We expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manupulation of N{\'e}el-type skyrmions

    Microinjection of superior cervical ganglion neurons for studying axon degeneration

    Get PDF
    Primary cultures of neurons of the peripheral nervous system have been successfully used for studying many aspects of neuronal development and survival, including investigations into the mechanisms of axon degeneration. In this chapter we describe how to prepare and microinject dissociated cultures of sympathetic neurons of the superior cervical ganglion (SCG) specifically for use in highly controlled and targeted assays of axon survival and degeneration

    Energy-level statistics at the metal-insulator transition in anisotropic systems

    Full text link
    We study the three-dimensional Anderson model of localization with anisotropic hopping, i.e. weakly coupled chains and weakly coupled planes. In our extensive numerical study we identify and characterize the metal-insulator transition using energy-level statistics. The values of the critical disorder WcW_c are consistent with results of previous studies, including the transfer-matrix method and multifractal analysis of the wave functions. WcW_c decreases from its isotropic value with a power law as a function of anisotropy. Using high accuracy data for large system sizes we estimate the critical exponent ν=1.45±0.2\nu=1.45\pm0.2. This is in agreement with its value in the isotropic case and in other models of the orthogonal universality class. The critical level statistics which is independent of the system size at the transition changes from its isotropic form towards the Poisson statistics with increasing anisotropy.Comment: 22 pages, including 8 figures, revtex few typos corrected, added journal referenc

    Effects of Scale-Free Disorder on the Anderson Metal-Insulator Transition

    Full text link
    We investigate the three-dimensional Anderson model of localization via a modified transfer-matrix method in the presence of scale-free diagonal disorder characterized by a disorder correlation function g(r)g(r) decaying asymptotically as rαr^{-\alpha}. We study the dependence of the localization-length exponent ν\nu on the correlation-strength exponent α\alpha. % For fixed disorder WW, there is a critical αc\alpha_{\rm c}, such that for α<αc\alpha < \alpha_{\rm c}, ν=2/α\nu=2/\alpha and for α>αc\alpha > \alpha_{\rm c}, ν\nu remains that of the uncorrelated system in accordance with the extended Harris criterion. At the band center, ν\nu is independent of α\alpha but equal to that of the uncorrelated system. The physical mechanisms leading to this different behavior are discussed.Comment: submitted to Phys. Rev. Let

    The three-dimensional Anderson model of localization with binary random potential

    Full text link
    We study the three-dimensional two-band Anderson model of localization and compare our results to experimental results for amorphous metallic alloys (AMA). Using the transfer-matrix method, we identify and characterize the metal-insulator transitions as functions of Fermi level position, band broadening due to disorder and concentration of alloy composition. The appropriate phase diagrams of regions of extended and localized electronic states are studied and qualitative agreement with AMA such as Ti-Ni and Ti-Cu metallic glasses is found. We estimate the critical exponents nu_W, nu_E and nu_x when either disorder W, energy E or concentration x is varied, respectively. All our results are compatible with the universal value nu ~ 1.6 obtained in the single-band Anderson model.Comment: 9 RevTeX4 pages with 11 .eps figures included, submitted to PR

    Scaling of the conductance distribution near the Anderson transition

    Full text link
    The single parameter scaling hypothesis is the foundation of our understanding of the Anderson transition. However, the conductance of a disordered system is a fluctuating quantity which does not obey a one parameter scaling law. It is essential to investigate the scaling of the full conductance distribution to establish the scaling hypothesis. We present a clear cut numerical demonstration that the conductance distribution indeed obeys one parameter scaling near the Anderson transition
    corecore