7 research outputs found

    Fourier-Transform infrared spectroscopy of ethyl lactate decomposition and thin-film coating in a filamentary and a glow dielectric barrier discharge

    Get PDF
    Glow and filamentary regimes of atmospheric pressure plasma-enhanced chemical vapor deposition in a planar dielectric barrier discharge configuration were compared for thin-film deposition from ethyl lactate (EL). EL decomposition in the plasma phase and thin-film composition were both characterized by Fourier- transform infrared spectroscopy. EL chemical bonds' concentration along the gas flow decreases progressively in the glow dielectric barrier discharge (GDBD), whereas it drastically oscillates in the filamentary dielectric barrier discharge (FDBD), with values higher than that of the initial mixture. EL decomposition route depends on the discharge regime, as the decrease of the concentration of the different investigated bonds is different for an identical amount of energy provided to EL molecules. CO2 is systematically formed reaching concentrations of 25 and 40 ppm, respectively, in FDBD and GDBD

    Couches minces nanocomposites contrôlées pour un nouveau système d'administration de médicaments pour des implants cardiovasculaires : décomposition des précurseurs organiques et transport des nanoparticules dans un plasma de décharge à barrière diélectrique à pression atmosphérique

    Get PDF
    Mémoire ou thèse en cotutelleLes maladies du cœur et des vaisseaux sanguins sont encore aujourd'hui, les principales causes de décès dans la plupart des pays européens, au Canada et aux États-Unis. Souvent, un blocage des artères induit par une sténose entraîne la nécessité d'une chirurgie de pontage. Même si l'utilisation des veines du patient lui-même évite la réponse immunitaire et semble être la solution la plus avantageuse, elle s'avère en fait infructueuse dans un tiers des cas. Pour cette raison, des greffes vasculaires en polytétrafluoroéthylène (PTFE) sont utilisées. Elles présentent de bonnes propriétés mécaniques et une bonne stabilité mais peuvent, dans certains cas, avoir des effets secondaires indésirables et provoquer une hyperplasie néo-intimale à l'interface entre le vaisseau natif et la greffe vasculaire, ce qui en retour peut entraîner une resténose. Afin d'inhiber ce phénomène, il a été proposé d'utiliser un médicament, le mésylate d'imatinib (IM), qui est un inhibiteur de trois récepteurs de kinase à savoir le PDGF-R, le c-Kit et l'abl, les deux premiers étant impliqués dans le mécanisme du phénomène à inhiber. Il a été démontré in vitro que de petites doses de IM inhibent avec succès la prolifération des cellules musculaires lisses (CML) sans ralentir l'endothélialisation. Ce médicament a donc été choisi pour améliorer la fonctionnalité des greffes vasculaires en PTFE. L'objectif de ce projet est de trouver un moyen de développer une approche innovante pour incorporer le mésylate d'imatinib dans les greffons vasculaires et permettre sa libération contrôlée au contact du sang. Pour ce faire, la création de films minces par dépôt chimique en phase vapeur assisté par plasma à pression atmosphérique (AP-PECVD) dans une configuration de décharge de barrière diélectrique (DBD) a été réalisée. Pour protéger le médicament des espèces énergétiques et réactives du plasma, il a été encapsulé dans des nanoparticules (NP) qui ajoutent aussi un autre niveau de contrôle de la libération du médicament. Ainsi, le dépôt d'une couche mince organique nanostructurée par des NPs de silice remplie de médicament a été réalisé sous pression atmosphérique dans un plasma d'argon. Le problème a tout d'abord été abordé par l'étude de la décomposition du précurseur organique dans une DBD plan-plan par spectroscopie infrarouge à transformée de Fourier (IRTF) et la corrélation avec la chimie du film déposé. Dans un premier temps, l'observation d'artéfacts dans les spectres infrarouges du plasma, attribués à tort dans la littérature à des raies de vibration, a été expliquée et décrite mathématiquement. Les résultats obtenus montrent que le nombre d'onde auquel ces artéfacts sont observés dépendent de la fréquence à laquelle est généré le plasma et de la fréquence d'échantillonnage de l'interférogramme mesuré par le spectromètre. En second lieu, la technologie plasma à la pression atmosphérique en mode FSK (Frequency Shift Keying) à 1 kHz et 15 kHz a été mise à profit pour déposer conjointement un polymère plasma, en utilisant le lactate d'éthyle comme précurseur, et des nanoparticules de silices, préalablement dispersées dans le précurseur. Encore une fois, la phase plasma a été caractérisée par spectroscopie infrarouge alors que le nanocomposite obtenu a été étudié par spectroscopie infrarouge, microscopie à balayage et microscopie à force atomique. Ces travaux démontrent clairement que les nanoparticules sont préférentiellement déposées pendant le cycle de basse fréquence de la décharge alors que la polymérisation du précurseur, qui requiert plus d'énergie, est plutôt observée à plus haute fréquence. Par la suite, la spectroscopie infrarouge résolue dans l'espace a été utilisée pour comparer les mécanismes de polymérisation du lactate d'éthyle pour deux modes de décharge, à savoir le régime filamentaire et le régime homogène. Les résultats ainsi générés ont permis de suivre la dégradation du précurseur organique au long de la décharge et de corréler cette information avec la composition du polymère plasma déposé. Ils ont aussi montré que la spectroscopie IRTF du gaz permet de caractériser les NPs. Finalement, les annexes de cette thèse présentent des résultats préliminaires qui visent à démontrer la faisabilité d'application des couches développées à des prothèses vasculaires et le potentiel de la stratégie globale pour inhiber la prolifération des cellules musculaires lisses. En annexe de la thèse, une recherche sur la faisabilité de la création de nanoparticules métalliques dans des plasmas gazeux est abordée et présentée.Diseases of the heart and blood vessels are still the leading causes of death in most European countries, as well as Canada and the USA. Often, a blockage of the arteries induced by stenosis results in the need for a bypass surgery. Even though, harvesting the vein from the patient himself, avoiding immune response, seems like the most advantageous solution, it does in fact, in one third of the cases, show to be unsuccessful. For that reason, polytetrafluoroethylene (PTFE) vascular grafts are used. They show to have good mechanical properties and stability but could, in some cases, have unwanted side effect and cause neointimal hyperplasia on the interface between the native vessel and the vascular graft, this in return can result in restenosis. In order to inhibit this phenomenon, it has been proposed to use a drug, matinib mesylate (IM), which is an inhibitor of three kinase receptors: PDGF-R, c-Kit and abl, where the first two ones are implicated in the occurrence of neointimal hyperplasia. It has been shown that small doses of IM successfully inhibit SMC proliferation without slowing down the endothelialisation, hence it has been chosen as the drug to improve the functionality of PTFE vascular grafts. The goal of this project was to find a way to develop an innovative approach to incorporate imatinib mesylate into the vascular grafts and enable its controlled release upon contact with the blood. To do that, the creation of thin films by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (AP-PECVD) in a Dielectric Barrier Discharge (DBD) configuration was chosen to be conducted. However, to protect the drug from the energetic and reactive plasma species, nanoparticles (NPs) were used to encapsulate the drug and to act as another level for controlled drug release. Indeed, deposition of an organic nanostructured, by silica nanoparticles, drug-filled thin layer has been achieved under atmospheric pressure in an argon plasma. The way this problem was tackled, was to first study the behavior of the organic precursor in the plasma by in-situ Fourier Transform Infrared Spectroscopy (FTIR), while the thin film is deposited and compare with the characterization of the final layer.First, the observation of artefacts in infrared spectra of plasmas, mistakenly attributed in the literature to vibration lines, was explained and described mathematically. The results obtained show that the wavenumber at which these artefacts are observed depends on the frequency at which the plasma is generated and on the sampling frequency of the interferogram measured by the spectrometer. Secondly, plasma technology at atmospheric pressure in FSK (Frequency Shift Keying) mode at 1 kHz and 15 kHz was used to simultaneously deposit a plasma polymer, using ethyl lactate as a precursor, and silica nanoparticles, dispersed beforehand in the precursor. Again, the plasma phase was characterized by infrared spectroscopy while the resulting nanocomposite was studied by infrared spectroscopy, scanning microscopy and atomic force microscopy. This work clearly shows that the nanoparticles are preferentially deposited during the low frequency cycle of the discharge, while the polymerization of the precursor, which requires more energy, is rather observed at a higher frequency. Subsequently, space-resolved infrared spectroscopy was used to compare the polymerization mechanisms of ethyl lactate for two modes of discharge, namely the filamentary regime and the homogeneous regime. The results thus generated made it possible to follow the degradation of the organic precursor throughout the discharge and to correlate this information with the composition of the plasma polymer deposited. They also showed that FTIR gas spectroscopy makes it possible to characterize the NPs. Finally, the conclusions of this thesis present preliminary results which aim to demonstrate the feasibility of applying the developed layers to vascular prostheses and the potential of the overall strategy to inhibit the proliferation of smooth muscle cells. En annexe de la thèse, une recherche sur la faisabilité de la création de nanoparticules métalliques dans des plasmas gazeux est abordée et présentée

    Controlled synthesis of nanocomposite thin films for a novel drug delivery system for cardiovascular grafts : decomposition of organic precursor and transport of nanoparticles in a dielectric barrier discharge plasma at atmospheric pressure

    No full text
    Les maladies du cour et des vaisseaux sanguins sont encore aujourd'hui, les principales causes de déces dans les pays européens, au Canada et aux États-Unis. Souvent, un blocage des arteres induit par une sténose entraîne la nécessité d'une chirurgie de pontage. Meme si l'utilisation des veines du patient lui-meme évite la réponse immunitaire et semble etre la solution la plus avantageuse, elle s'avere en fait infructueuse dans un tiers des cas. Pour cette raison, des greffes vasculaires en polytétrafluoroéthylene (PTFE) sont utilisées. Elles présentent de bonnes propriétés mécaniques et une bonne stabilité mais peuvent, dans certains cas, avoir des effets secondaires indésirables et provoquer une hyperplasie néointimale (HN) a l'interface entre le vaisseau natif et la greffe vasculaire, ce qui en retour peut entraîner une resténose. Afin d'inhiber ce phénomene, il a été proposé d'utiliser un médicament, le mésylate d'imatinib (IM), qui est un inhibiteur de trois récepteurs de kinase (PDGF-R, le c-Kit et l'abl) les deux étant impliqués dans HN. Il a été démontré in vitro que de petites doses de IM inhibent avec succes la prolifération des cellules musculaires lisses (CML) sans ralentir l'endothélialisation. Ce médicament a donc été choisi pour améliorer la fonctionnalité des greffes vasculaires en PTFE.L'objectif de ce projet est de trouver un moyen de développer une approche innovante pour incorporer le mésylate d'imatinib dans les greffons vasculaires et permettre sa libération contrôlée au contact du sang. Pour ce faire, la création de films minces par dépôt chimique en phase vapeur assisté par plasma a pression atmosphérique (AP-PECVD) dans une configuration de décharge de barriere diélectrique (DBD) a été réalisée. Pour protéger le médicament des especes énergétiques et réactives du plasma, il a été encapsulé dans des nanoparticules (NP) qui ajoutent aussi un autre niveau de contrôle de la libération du médicament. Ainsi, le dépôt d'une couche mince organique nanostructurée par des NPs de silice remplie de médicament a été réalisé a pression atmosphérique dans un plasma d'argon.Le probleme été abordé par l'étude de la décomposition du précurseur organique dans une DBD plan-plan par spectroscopie infrarouge a transformée de Fourier (IRTF) et la corrélation avec la chimie du film déposé. Dans un premier temps, l'observation d'artéfacts dans les spectres infrarouges du plasma, attribués a tort dans la littérature a des raies de vibration, a été expliquée et décrite mathématiquement. Les résultats obtenus montrent que le nombre d'onde auquel ces artéfacts sont observés dépendent de la fréquence a laquelle est généré le plasma et de la fréquence d'échantillonnage de l'interférogramme. Apres, la technologie plasma a la pression atmosphérique en mode FSK a 1 kHz et 15 kHz a été mise a profit pour déposer conjointement un polymere plasma, en utilisant le lactate d'éthyle comme précurseur, et des nanoparticules de silices dispersées dans le précurseur. Ces travaux démontrent clairement que les nanoparticules sont préférentiellement déposées pendant le cycle de basse fréquence de la décharge alors que la polymérisation du précurseur, qui requiert plus d'énergie, est plutôt observée a plus haute fréquence. Par la suite, la IRTF résolue dans l'espace a été utilisée pour comparer les mécanismes de polymérisation du lactate d'éthyle pour deux modes de décharge : régime filamentaire et homogene. Les résultats ainsi générés ont permis de suivre la dégradation du précurseur organique au long de la décharge et de corréler cette information avec la composition du polymere plasma déposé. Ils ont aussi montré que la IRTF du gaz permet de caractériser les NPs. Finalement, les annexes de cette these présentent des résultats préliminaires qui visent a démontrer la faisabilité d'application des couches développées a des protheses vasculaires et le potentiel de la stratégie globale pour inhiber la prolifération des cellules musculaires lisses.Diseases of the heart and blood vessels are still the leading causes of death in most European countries, as well as Canada and the USA. Often, a blockage of the arteries induced by stenosis results in the need for a bypass surgery. Even though, harvesting the vein from the patient himself, avoiding immune response, seems like the most advantageous solution, it does in fact, in one third of the cases, show to be unsuccessful. For that reason, polytetrafluoroethylene (PTFE) vascular grafts are used. They show to have good mechanical properties and stability but could, in some cases, have unwanted side effect and cause neointimal hyperplasia on the interface between the native vessel and the vascular graft, this in return can result in restenosis. In order to inhibit this phenomenon, it has been proposed to use a drug, imatinib mesylate (IM), which is an inhibitor of three kinase receptors: PDGF-R, c-Kit and abl, where the first two ones are implicated in the occurrence of neointimal hyperplasia. It has been shown that small doses of IM successfully inhibit SMC proliferation without slowing down the endothelialisation, hence it has been chosen as the drug to improve the functionality of PTFE vascular grafts.The goal of this project was to find a way to develop an innovative approach to incorporate imatinib mesylate into the vascular grafts and enable its controlled release upon contact with the blood. To do that, the creation of thin films by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (AP-PECVD) in a Dielectric Barrier Discharge (DBD) configuration was chosen to be conducted. However, to protect the drug from the energetic and reactive plasma species, nanoparticles (NPs) were used to encapsulate the drug and to act as another level for controlled drug release. Indeed, deposition of an organic nanostructured, by silica nanoparticles, drug-filled thin layer has been achieved under atmospheric pressure in an argon plasma. The way this problem was tackled, was to first study the behavior of the organic precursor in the plasma by in-situ Fourier Transform Infrared Spectroscopy (FTIR), while the thin film is deposited and compare with the characterization of the final layer. First, the observation of artefacts in infrared spectra of plasmas, mistakenly attributed in the literature to vibration lines, was explained and described mathematically. The results obtained show that the wavenumber at which these artefacts are observed depends on the frequency at which the plasma is generated and on the sampling frequency of the interferogram measured by the spectrometer. Secondly, plasma technology at atmospheric pressure in FSK (Frequency Shift Keying) mode at 1 kHz and 15 kHz was used to simultaneously deposit a plasma polymer, using ethyl lactate as a precursor, and silica nanoparticles, dispersed beforehand in the precursor. This work clearly shows that the nanoparticles are preferentially deposited during the low frequency cycle of the discharge, while the polymerization of the precursor, which requires more energy, is rather observed at a higher frequency. Subsequently, space-resolved infrared spectroscopy was used to compare the polymerization mechanisms of ethyl lactate for two modes of discharge, namely the filamentary regime and the homogeneous regime. The results thus generated made it possible to follow the degradation of the organic precursor throughout the discharge and to correlate this information with the composition of the plasma polymer deposited. They also showed that FTIR gas spectroscopy makes it possible to characterize the NPs. Finally, the conclusions of this thesis present preliminary results which aim to demonstrate the feasibility of applying the developed layers to vascular prostheses and the potential of the overall strategy to inhibit the proliferation of smooth muscle cells

    Couches minces nanocomposites contrôlées pour un nouveau système d'administration de médicaments pour des implants cardiovasculaires : décomposition des précurseurs organiques et transport des nanoparticules dans un plasma de décharge à barrière diélectrique à pression atmosphérique

    Get PDF
    Diseases of the heart and blood vessels are still the leading causes of death in most European countries, as well as Canada and the USA. Often, a blockage of the arteries induced by stenosis results in the need for a bypass surgery. Even though, harvesting the vein from the patient himself, avoiding immune response, seems like the most advantageous solution, it does in fact, in one third of the cases, show to be unsuccessful. For that reason, polytetrafluoroethylene (PTFE) vascular grafts are used. They show to have good mechanical properties and stability but could, in some cases, have unwanted side effect and cause neointimal hyperplasia on the interface between the native vessel and the vascular graft, this in return can result in restenosis. In order to inhibit this phenomenon, it has been proposed to use a drug, imatinib mesylate (IM), which is an inhibitor of three kinase receptors: PDGF-R, c-Kit and abl, where the first two ones are implicated in the occurrence of neointimal hyperplasia. It has been shown that small doses of IM successfully inhibit SMC proliferation without slowing down the endothelialisation, hence it has been chosen as the drug to improve the functionality of PTFE vascular grafts.The goal of this project was to find a way to develop an innovative approach to incorporate imatinib mesylate into the vascular grafts and enable its controlled release upon contact with the blood. To do that, the creation of thin films by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (AP-PECVD) in a Dielectric Barrier Discharge (DBD) configuration was chosen to be conducted. However, to protect the drug from the energetic and reactive plasma species, nanoparticles (NPs) were used to encapsulate the drug and to act as another level for controlled drug release. Indeed, deposition of an organic nanostructured, by silica nanoparticles, drug-filled thin layer has been achieved under atmospheric pressure in an argon plasma. The way this problem was tackled, was to first study the behavior of the organic precursor in the plasma by in-situ Fourier Transform Infrared Spectroscopy (FTIR), while the thin film is deposited and compare with the characterization of the final layer. First, the observation of artefacts in infrared spectra of plasmas, mistakenly attributed in the literature to vibration lines, was explained and described mathematically. The results obtained show that the wavenumber at which these artefacts are observed depends on the frequency at which the plasma is generated and on the sampling frequency of the interferogram measured by the spectrometer. Secondly, plasma technology at atmospheric pressure in FSK (Frequency Shift Keying) mode at 1 kHz and 15 kHz was used to simultaneously deposit a plasma polymer, using ethyl lactate as a precursor, and silica nanoparticles, dispersed beforehand in the precursor. This work clearly shows that the nanoparticles are preferentially deposited during the low frequency cycle of the discharge, while the polymerization of the precursor, which requires more energy, is rather observed at a higher frequency. Subsequently, space-resolved infrared spectroscopy was used to compare the polymerization mechanisms of ethyl lactate for two modes of discharge, namely the filamentary regime and the homogeneous regime. The results thus generated made it possible to follow the degradation of the organic precursor throughout the discharge and to correlate this information with the composition of the plasma polymer deposited. They also showed that FTIR gas spectroscopy makes it possible to characterize the NPs. Finally, the conclusions of this thesis present preliminary results which aim to demonstrate the feasibility of applying the developed layers to vascular prostheses and the potential of the overall strategy to inhibit the proliferation of smooth muscle cells.Les maladies du cour et des vaisseaux sanguins sont encore aujourd'hui, les principales causes de déces dans les pays européens, au Canada et aux États-Unis. Souvent, un blocage des arteres induit par une sténose entraîne la nécessité d'une chirurgie de pontage. Meme si l'utilisation des veines du patient lui-meme évite la réponse immunitaire et semble etre la solution la plus avantageuse, elle s'avere en fait infructueuse dans un tiers des cas. Pour cette raison, des greffes vasculaires en polytétrafluoroéthylene (PTFE) sont utilisées. Elles présentent de bonnes propriétés mécaniques et une bonne stabilité mais peuvent, dans certains cas, avoir des effets secondaires indésirables et provoquer une hyperplasie néointimale (HN) a l'interface entre le vaisseau natif et la greffe vasculaire, ce qui en retour peut entraîner une resténose. Afin d'inhiber ce phénomene, il a été proposé d'utiliser un médicament, le mésylate d'imatinib (IM), qui est un inhibiteur de trois récepteurs de kinase (PDGF-R, le c-Kit et l'abl) les deux étant impliqués dans HN. Il a été démontré in vitro que de petites doses de IM inhibent avec succes la prolifération des cellules musculaires lisses (CML) sans ralentir l'endothélialisation. Ce médicament a donc été choisi pour améliorer la fonctionnalité des greffes vasculaires en PTFE.L'objectif de ce projet est de trouver un moyen de développer une approche innovante pour incorporer le mésylate d'imatinib dans les greffons vasculaires et permettre sa libération contrôlée au contact du sang. Pour ce faire, la création de films minces par dépôt chimique en phase vapeur assisté par plasma a pression atmosphérique (AP-PECVD) dans une configuration de décharge de barriere diélectrique (DBD) a été réalisée. Pour protéger le médicament des especes énergétiques et réactives du plasma, il a été encapsulé dans des nanoparticules (NP) qui ajoutent aussi un autre niveau de contrôle de la libération du médicament. Ainsi, le dépôt d'une couche mince organique nanostructurée par des NPs de silice remplie de médicament a été réalisé a pression atmosphérique dans un plasma d'argon.Le probleme été abordé par l'étude de la décomposition du précurseur organique dans une DBD plan-plan par spectroscopie infrarouge a transformée de Fourier (IRTF) et la corrélation avec la chimie du film déposé. Dans un premier temps, l'observation d'artéfacts dans les spectres infrarouges du plasma, attribués a tort dans la littérature a des raies de vibration, a été expliquée et décrite mathématiquement. Les résultats obtenus montrent que le nombre d'onde auquel ces artéfacts sont observés dépendent de la fréquence a laquelle est généré le plasma et de la fréquence d'échantillonnage de l'interférogramme. Apres, la technologie plasma a la pression atmosphérique en mode FSK a 1 kHz et 15 kHz a été mise a profit pour déposer conjointement un polymere plasma, en utilisant le lactate d'éthyle comme précurseur, et des nanoparticules de silices dispersées dans le précurseur. Ces travaux démontrent clairement que les nanoparticules sont préférentiellement déposées pendant le cycle de basse fréquence de la décharge alors que la polymérisation du précurseur, qui requiert plus d'énergie, est plutôt observée a plus haute fréquence. Par la suite, la IRTF résolue dans l'espace a été utilisée pour comparer les mécanismes de polymérisation du lactate d'éthyle pour deux modes de décharge : régime filamentaire et homogene. Les résultats ainsi générés ont permis de suivre la dégradation du précurseur organique au long de la décharge et de corréler cette information avec la composition du polymere plasma déposé. Ils ont aussi montré que la IRTF du gaz permet de caractériser les NPs. Finalement, les annexes de cette these présentent des résultats préliminaires qui visent a démontrer la faisabilité d'application des couches développées a des protheses vasculaires et le potentiel de la stratégie globale pour inhiber la prolifération des cellules musculaires lisses

    Atmospheric-pressure plasma-enhanced chemical vapor deposition of nanocomposite thin films from ethyl lactate and silica nanoparticles

    No full text
    Nanocomposite coatings are made by atmospheric-pressure plasma-enhanced chemical vapor deposition from ethyl lactate (EL) and silica nanoparticles (NPs) in a dielectric barrier discharge (DBD) using frequency-shift keying (FSK) to alternate between 1- and 15-kHz voltages. In situ plasma Fourier-transform infrared spectroscopy (FTIR) and thin film FTIR, scanning electron microscopy, atomic force microscopy, and profilometry show that (i) 1 kHz DBD mainly deposits NPs, 15 kHz only polymerizes EL; (ii) the EL polymerization rate is the same in FSK and continuous modes; (iii) despite the 50/50 contribution of both frequencies, the NP deposit is three times faster in FSK mode than in 1 kHz DBD and compared with 1 and 15 kHz coatings, in the nanocomposite, NP Si–O–Si and EL C═O bonds per unit length are equal to 68% and 34%, respectively. In situ FTIR detects SiO2 NPs, their functionalization, and the formation of CO2

    A new approach for synthesizing plasmonic polymer nanocomposite thin films by combining a gold salt aerosol and an atmospheric pressure low-temperature plasma

    No full text
    The proof of the concept of a new, onestep and safe by design process to synthesize metalpolymer nanocomposites thin films on a large surface is presented. It is based on the injection of an aerosol of a solution of metal (gold) salts dissolved in a polymerizable solvent (isopropanol) into an argon atmospheric pressure dielectric barrier discharge. The main novelty of this method resides in the fact that the nanoparticles are formed in situ, inside the plasma reactor, in the gas phase. Consequently, the nanoparticle synthesis and deposition are concomitant with the solvent polymerization used to produce the matrix, which makes it possible to obtain homogeneous layers of non-agglomerated nanoparticles (NPs) with high NPs density. By toggling between low and highfrequency discharges, gold/polymer nanocomposites with different morphologies and optical properties are synthesized. The effect of the concentration of gold in the aerosol and the gas residence time in the plasma as well as the ratio of high and low-frequency discharge and their repetition rate are presented. The thin films are systematically characterized by AFM and UV–visible spectroscopy to analyze their morphologies along with their plasmonic resonances. Supplementary material for this article is available online

    Transformation by plasma technology of cisplatin found in hospital's wastewaters into platinum-containing nanoparticles

    No full text
    Platinum-containing molecules such as cisplatin figure among oncology's most widely used antineoplastic agents. Cisplatin excreted in the urine usually ends up in municipal wastewater, with a strong toxicological and carcinogenic impact on the environment. Thus, cisplatin should be inactivated before reaching wastewater to attenuate its environmental impact. However, conventional recommended procedures use large quantities of toxic acids, which are not sustainable processes. In this study, a dielectric barrier discharge (DBD) atmospheric pressure plasma reactor is used to degrade cisplatin in wastewater, allowing platinum's recuperation. The article describes the plasma discharge (power, electron temperature, and density) and confirms the most stable operation parameters under Ar and Ar+H2 discharges. Cisplatin is diluted in water or synthetic urine, and plasma treatment is conducted for 30 min. The process degrades cisplatin molecules by conversion into platinum-rich nanoparticles (NPs). These nanoparticles are efficiently recuperated by centrifugation and are characterized by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). The mass-balance assessment confirms that more than 90% of cisplatin is degraded and recuperated as Pt-rich NPs
    corecore