340 research outputs found

    Synthesis And Characterization Of Polyynes End-Capped By Biphenyl Groups ({\Alpha},{\Omega}-Biphenylpolyynes)

    Full text link
    Stable polyyne chains terminated with biphenyl end groups (a,u-biphenylpolyynes) were synthesized in a single step through a simple procedure by using the Cadiot-Chodkiewicz reaction conditions. The a,ubiphenylpolyynes were separated through HPLC analysis and identified by means of their electronic absorption spectra. The a,u-biphenylpolyynes were studied by FT-IR and Raman spectroscopy and the spectral interpretation was supported with DFT calculations. A peculiarly low reactivity of a,u-biphenylpolyynes with ozone was observed.Comment: The research leading to these results has received funding from the European Research Council Consolidator Grant EspLORE (ERC-2016-CoG Grant No.724610

    Asteroid families classification: exploiting very large data sets

    Full text link
    The number of asteroids with accurately determined orbits increases fast. The catalogs of asteroid physical observations have also increased, although the number of objects is still smaller than in the orbital catalogs. We developed a new approach to the asteroid family classification by combining the Hierarchical Clustering Method (HCM) with a method to add new members to existing families. This procedure makes use of the much larger amount of information contained in the proper elements catalogs, with respect to classifications using also physical observations for a smaller number of asteroids. Our work is based on the large catalog of the high accuracy synthetic proper elements (available from AstDyS). We first identify a number of core families; to these we attribute the next layer of smaller objects. Then, we remove all the family members from the catalog, and reapply the HCM to the rest. This gives both halo families which extend the core families and new independent families, consisting mainly of small asteroids. These two cases are discriminated by another step of attribution of new members and by merging intersecting families. By using information from absolute magnitudes, we take advantage of the larger size range in some families to analyze their shape in the proper semimajor axis vs. inverse diameter plane. This leads to a new method to estimate the family age (or ages). The results from the previous steps are then analyzed, using also auxiliary information on physical properties including WISE albedos and SDSS color indexes. This allows to solve some difficult cases of families overlapping in the proper elements space but generated by different collisional events. We analyze some examples of cratering families (Massalia, Vesta, Eunomia) which show internal structures, interpreted as multiple collisions. We also discuss why Ceres has no family

    Design of the optimal fiber-reinforcement for masonry structures via topology optimization

    Get PDF
    AbstractA novel approach for the rational positioning of fiber reinforcements on masonry structures based on topology optimization is presented. Due to the brittle behavior of masonry, the minimization of the strain energy cannot be implemented to generate truss-like layouts that may be interpreted as strut-and-tie models in the discontinuity regions of reinforced concrete structures. To cope with the brittleness of brickwork, the optimal problem can be conveniently reduced to the minimization of the amount of reinforcement required to keep tensile stresses in any masonry element below a prescribed threshold. A strength criterion recently proposed for masonry is employed, based on a lower bound limit analysis homogenization model (Milani, 2011) and relying upon a discretization of ¼ of any unit cell by six CST elements. Thanks to the limited number of variables involved, closed form solutions for the masonry macroscopic strength domain can be obtained. This criterion is implemented into the multi-constrained discrete formulation of the topology optimization algorithm, to locally control the stress field over the design domain. For comparison, the phenomenological Tsai–Wu strength criterion for anisotropic solids is also implemented.The contribution discusses three sets of numerical results, addressing the fiber-reinforcement of some benchmark masonry walls. The optimal reinforcement layouts are found to be affected by the choice of the masonry strength criterion only to a limited extent, as far as failure in the masonry element is mainly due to tensile stresses. Contrary to intuition, placing the reinforcing fibers along the direction of the principal tensile stresses in masonry is also found to be not necessarily the most effective solution, for certain geometries and load conditions

    Fast stability analysis of masonry domes and vaults subjected to gravity-induced loads

    Get PDF
    This paper presents two different (semi)analytical methods for the limit analysis of masonry structures, i.e., a static approach known as “stability area method”, theoretically framed within the lower bound theorem of limit analysis, and a kinematic approach, based on the upper bound theorem. The analysis is conducted on case studies of masonry domes and vaults subjected to a vertical load applied at the crown. The collapse load is obtained by considering different hypotheses on the masonry tensile and compressive strengths. The results are compared with those deriving from experimental tests available in the literature

    Recent advances in masonry homogenization

    Get PDF
    Homogenization remains a popular subject in masonry research. Usually the complex geometry of the basic cell is replaced by a simplified geometry so that a close-form solution of the homogenization problem is possible. Many other approaches involving different approximations and ingenious assumptions have been sought. To overcome the weak approximation, a micromechanical homogenization model that consider additional internal deformation mechanisms and a model based on the polynomial expansion of the stress field inside the R.V.E. are presented

    Enhanced Patch-Clamp Technique to Study Antimicrobial Peptides and Viroporins, Inserted in a Cell Plasma Membrane with Fully Inactivated Endogenous Conductances

    Get PDF
    Many short peptides selectively permeabilize the bacteria plasma membrane, leading to their lyses and death: they are therefore a source of antibacterial molecules, and inspiration for novel and more selective drugs. Another class of short (<100 residues) membrane proteins called viroporins, because they are coded by viral genes, permeabilizes the membrane of susceptible cells during infection of by most animal viruses. The permeabilization leads to host cell lyses and the release of the virus mass, replicated at host cell expense, to propagate the infection. Detailed knowledge of the permeabilization properties of these proteins would allow to design, for instance, selective blockers of these pores, that would contrast the spread of the viral infection. In this chapter, the patch-clamp technique is employed to study the mechanism of membrane permeabilization induced by the pore-forming peptides, under strict physiological conditions. This goal is achieved by recording the ion current through the channels formed by these peptides, once inserted in a cell plasma membrane. To avoid contamination by the cell membrane currents, all the endogenous current sources must be blocked. It has been found that the photoreceptor rod outer segment mechanically isolated from the retina of low vertebrates (OS) was the most suitable cell to carry on the above studies, because it was possible to fully block all its endogenous currents without using any drug (such as TTX, TEA, dihydropyridines, etc.), that could obstruct the peptide pores or interfere with the pore formation. The peptides were applied to (and removed from) the extracellular OS side in ~50 ms with a computer-controlled microperfusion system, in which every perfusion parameter (as the rate of solution flow, the temporal sequence of solution changes or the number of automatic, self-washing cycles) was controlled by a user-friendly interface. This system allowed rapid application and removal of ions, drugs and peptides on the cells with a controlled timing, so that the ion channel characteristics (as its selectivity, blockade and gating) and the dynamics of pore formation could be precisely assessed. On the basis of the electrophysiological recordings obtained with representative peptides and with selected analogs, as alamethicin F50/5, the cecoprine-mellitin hybrid peptide, and a 20-aminoacid long fragment of the viroporin poliovirus 2B, it will be shown that the membrane pore formation occurs according to the barrel and stave, toroidal, and carpet model, respectively, that are the most widely-accepted mechanisms of membrane permeabilization. When recording large currents (produced for instance by high concentrations of peptides and/or highly permeable peptides), it is necessary to minimize series resistance, to reduce time constant of charging the cell membrane capacitance and error in membrane potential control. A second problem arises from the asymmetry of the plasma membrane: it is possible that the permeabilization properties of a particular peptide could be different depending upon the side of the membrane to which it is applied. For example, it is conceivable that viroporins are optimized to insert in the intracellular face of the plasma membrane, because they are synthesized in host cell cytosol. These two problems could be circumvented by widening the patch pipette shank, through the calibrated combination of heat and air pressure. These pipettes dramatically reduce series resistance, and allow at the same time to insert pulled quartz or plastic tubes very close to the pipette tip, making it possible the delivery of large molecules to the cytosol with a controlled timing. Finally, it is presented here a simple procedure to consistently attain seals with conventional or pressure polished pipettes, made from just one glass type, on a wide variety of cell types, isolated from different amphibian, reptilian, fish, and mammalian tissues, and on artificial membranes made with many different lipid mixtures

    Homogenisation approaches for structural analysis of masonry buildings

    Get PDF
    Modern methodologies for the conservation of architectural heritage require structural analysis for the purpose of diagnosis and safety evaluation. This is not an easy task, as masonry structures usually feature a very low tensile strength, thus rendering the tool usually adopted for design of new structures (linear elastic analysis) of very limited use. Non-linear analysis of ancient masonry structures is a popular field in masonry research and homogenisation techniques play presently a major role, despite the mathematical and conceptual difficulties inherent to the approach. The paper addresses different homogenisation techniques available in the literature, with a focus on micro-mechanical models and on the polynomial expansion of the stress field. These seem promising and accurate strategies for advanced structural analysis

    P/2006 VW139: A Main-Belt Comet Born in an Asteroid Collision?

    Full text link
    In this paper we apply different methods to examine the possibility that a small group of 24 asteroids dynamically linked to main-belt comet P/2006 VW139, recently discovered by the Pan-STARRS1 survey telescope, shares a common physical origin. By applying the Hierarchical Clustering and Backward Integration methods, we find strong evidence that 11 of these asteroids form a sub-group which likely originated in a recent collision event, and that this group includes P/2006 VW139. The objects not found to be part of the 11-member sub-group, which we designate as the P/2006 VW139 family, were either found to be dynamically unstable, or these are likely interlopers which should be expected due to the close proximity of the Themis family. As we demonstrated, statistical significance of P/2006 VW139 family is >99 per cent. We determine the age of the family to be 7.5 +/- 0.3 Myr, and estimate the diameter of the parent body to be about 11 km. Results show that the family is produced by an impact which can be best characterized as a transition from catastrophic to cratering regime. The dynamical environment of this family is studied as well, including the identification of the most influential mean motion and secular resonances in the region. Our findings make P/2006 VW139 now the second main-belt comet to be dynamically associated with a young asteroid family, a fact with important implications for the origin and activation mechanism of such objects.Comment: Accepted for publication in MNRA
    • …
    corecore