12 research outputs found

    An Overview of Chitosan-Xanthan Gum Matrices as Controlled Release Drug Carriers

    Get PDF
    Naturally occurring polysaccharides and/or their chemically modified derivatives have been widely investigated in relation to their use as components of controlled release systems for drug delivery. The aforementioned is due, in part, to their distinct properties such as abundant availability and biocompatibility as well as environmental and economic advantages. Chitosan (CS) and xanthan gum (XG) based matrices have received growing scientific/pharmaceutical interest as oral controlled release drug carriers. Herein, recent advances spanning the last two decades in CS-XG based drug delivery systems are reviewed with the emphasis being on oral tablet formulations, due to their versatility as pharmaceutical dosage forms. The mechanism of interaction between CS and XG, by means of computational and experimental approaches, is scrutinized. Results obtained from the literature establish the possibility of fabricating a controlled release drug delivery system based on CS and XG matrices. This can be achieved by monitoring and manipulating the physiochemical properties of the two polymers as well as the experimental variables affecting their drug retardation efficiency, without the need to employ special equipment or sophisticated experimental techniques/methodologies

    Effect of protonation state and N-acetylation of chitosan on its interaction with xanthan gum: a molecular dynamics simulation study

    Get PDF
    Hydrophilic matrices composed of chitosan (CS) and xanthan gum (XG) complexes are of pharmaceutical interest in relation to drug delivery due to their ability to control the release of active ingredients. Molecular dynamics simulations (MDs) have been performed in order to obtain information pertaining to the effect of the state of protonation and degree of N-acetylation (DA) on the molecular conformation of chitosan and its ability to interact with xanthan gum in aqueous solutions. The conformational flexibility of CS was found to be highly dependent on its state of protonation. Upon complexation with XG, a substantial restriction in free rotation around the glycosidic bond was noticed in protonated CS dimers regardless of their DA, whereas deprotonated molecules preserved their free mobility. Calculated values for the free energy of binding between CS and XG revealed the dominant contribution of electrostatic forces on the formation of complexes and that the most stable complexes were formed when CS was at least half-protonated and the DA was ≤50%. The results obtained provide an insight into the main factors governing the interaction between CS and XG, such that they can be manipulated accordingly to produce complexes with the desired controlled-release effect

    A direct compression matrix made from Xanthan gum and low molecular weight chitosan designed to improve compressibility in controlled release tablets

    Get PDF
    The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties. Compression pressure and LCS content within the matrix were investigated for their influence on the crushing strength of the tablets produced. Response surface methodology (RSM) was applied to determine the optimum parameters required for DC of the matrices investigated. Results confirm the positive contribution of LCS in enhancing powder compressibility and crushing strength of the resultant compacts. Compactibility of the XG/LCS mixtures was found to be more sensitive to applied compression pressure than LCS content. LCS can be added at concentrations as low as 15% w/w to achieve hard compacts, as indicated by the RSM results. The introduction of the plasticity factor, using LCS, to the fragmenting material XG was the main reason for the high volume reduction and reduced porosity of the polymer mixture. Combinations of XG with other commonly utilized polymers in controlled release studies such as glucosamine, hydroxypropyl methylcellulose (HPMC), Na alginate (ALG), guar gum, lactose and high molecular weight (HMW) chitosan were also used; all the foregoing polymers failed to reduce the matrix porosity beyond a certain compression pressure. Application of the LCS/XG mixture, at its optimum composition, for the controlled release of two model drugs (metoprolol succinate and dyphylline) was examined. The XG/LCS matrix at 15% w/w LCS content was found to control the release of metoprolol succinate and dyphylline. The former preparation confirmed the strong influence of compression pressure on changing the drug release profile. The latter preparation showed the ability of XG/LCS to extend the drug release at a fixed rate for 12 h of dissolution time after which the release became slightly slower

    Comparison of DC Bead-irinotecan and DC Bead-topotecan drug eluting beads for use in locoregional drug delivery to treat pancreatic cancer

    Get PDF
    DC Bead is a drug delivery embolisation system that can be loaded with doxorubicin or irinotecan for the treatment of a variety of liver cancers. In this study we demonstrate that the topoisomerase I inhibitor topotecan hydrochloride can be successfully loaded into the DC Bead sulfonate-modified polyvinyl alcohol hydrogel matrix, resulting in a sustained-release drug eluting bead (DEBTOP) useful for therapeutic purposes. The in vitro drug loading capacity, elution characteristics and the effects on mechanical properties of the beads are described with reference to our previous work with irinotecan hydrochloride (DEBIRI). Results showed that drug loading was faster when the solution was agitated compared to static loading and a maximum loading of ca. 40–45 mg topotecan in 1 ml hydrated beads was achievable. Loading the drug into the beads altered the size, compressibility moduli and colour of the bead. Elution was shown to be reliant on the presence of ions to perform the necessary exchange with the electrostatically bound topotecan molecules. Topotecan was shown by MTS assay to have an IC50 for human pancreatic adenocarcinoma cells (PSN-1) of 0.22 and 0.27 lM compared to 28.1 and 19.2 lM for irinotecan at 48 and 72 h, respectively. The cytotoxic efficacy of DEBTOP on PSN-1 was compared to DEBIRI. DEPTOP loaded at 6 & 30 mg ml-1, like its free drug form, was shown to be more potent than DEBIRI of comparable doses at 24, 48 & 72 h using a slightly modified MTS assay. Using a PSN-1 mouse xenograft model, DEBIRI doses of 3.3–6.6 mg were shown to be well tolerated (even with repeat administration) and effective in reducing the tumour size. DEBTOP however, was lethal after 6 days at doses of 0.83–1.2 mg but demonstrated reasonable efficacy and tolerability (again with repeat injection possible) at 0.2–0.4 mg doses. Care must therefore be taken when selecting the dose of topotecan to be loaded into DC Bead given its greater potency and potential toxicity

    Protection of Brass in HCl Solution by L-Cysteine and Cationic Surfactant

    No full text
    Electrochemical behavior of brass and inhibitory effect of L-cysteine in HCl solution are investigated using electrochemical techniques in addition to SEM-EDS analysis. Results show that inhibition efficiency depends on inhibitor concentration and immersion time of brass electrode in inhibitor solution. Electrochemical test results point to formation of Cu(I)-cysteine complex on the brass surface in chloride solutions with addition of different amounts of cysteine. The formed complex has an important role in inhibition of the corrosion process in the examined media because Cu(I)-cysteine significantly reduces dissolution of brass. Curves obtained in acidic solution in the presence of cysteine after pretreatment in sodium dodecyl sulfate (SDS) by cyclic measurements and potentiodynamic polarization measurements indicate intense inhibition of corrosion processes. Efficient inhibition of brass dissolution is result of formation of a stable protective layer on the brass surface after pretreatment of the electrode in SDS solution. The brass surface is modified in sodium dodecyl sulfate solution in order to increase cysteine adsorption on the electrode surface and to improve inhibition efficiency. Inhibition mechanism of cysteine includes adsorption on active sites on the electrode surface, which is confirmed by SEM-EDS analysis of brass. Adsorption of cysteine in hydrochloric acid solution obeys the Langmuir adsorption isotherm. Also, Gibbs free energy of adsorption has a value of −31.5 kJ/mol and indicates strong adsorption of cysteine on the electrode surface

    Polystyrene Based Silver Selective Electrodes

    No full text
    Abstract: Silver(I) selective sensors have been fabricated from polystyrene matrix membranes containing macrocycle, Me6(14) diene.2HClO4 as ionophore. Best performance was exhibited by the membrane having a composition macrocycle: Polystyrene in the ratio 15:1. This membrane worked well over a wide concentration range 5.0×10-6 –1.0×10-1 M of Ag + with a near-Nernstian slope of 53.0 ± 1.0 mV per decade of Ag + activity. The response time of the sensor is <15 s and the membrane can be used over a period of four months with good reproducibility. The proposed electrode works well in a wide pH range 2.5-9.0 and demonstrates good discriminating power over a number of mono-, di-, and trivalent cations. The sensor has also been used as an indicator electrode in the potentiometric titration of silver(II) ions against NaCl solution. The sensor can also be used in non-aqueous medium with no significant change in the value of slope or working concentration range for the estimation of Ag + in solution having up to 25 % (v/v) nonaqueous fraction

    pH-Responsive Hydrogel Beads Based on Alginate, κ-Carrageenan and Poloxamer for Enhanced Curcumin, Natural Bioactive Compound, Encapsulation and Controlled Release Efficiency

    No full text
    Polyphenolic compounds are used for treating various diseases due to their antioxidant and anticancer properties. However, utilization of hydrophobic compounds is limited due to their low bioavailability. In order to achieve a greater application of hydrophobic bioactive compounds, hydrogel beads based on biopolymers can be used as carriers for their enhanced incorporation and controlled delivery. In this study, beads based on the biopolymers-κ-carrageenan, sodium alginate and poloxamer 407 were prepared for encapsulation of curcumin. The prepared beads were characterized using IR, SEM, TGA and DSC. The curcumin encapsulation efficiency in the developed beads was 95.74 ± 2.24%. The release kinetics of the curcumin was monitored in systems that simulate the oral delivery (pH 1.2 and 7.4) of curcumin. The drug release profiles of the prepared beads with curcumin indicated that the curcumin release was significantly increased compared with the dissolution of curcumin itself. The cumulative release of curcumin from the beads was achieved within 24 h, with a final release rate of 12.07% (gastric fluid) as well as 81.93% (intestinal fluid). Both the in vitro and in vivo studies showed that new hydrogel beads based on carbohydrates and poloxamer improved curcumin’s bioavailability, and they can be used as powerful carriers for the oral delivery of different hydrophobic nutraceuticals
    corecore